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This exercise sheet contains some exercises to help you understand the cour-
se. They are more or less in the order in which the notions are presented in the
lecture.

Exercises marked with ◦ are exercises to help you understand the definitions
of the course.

Exercises marked with ⋆ are exercises you can choose to present (on the
board). Every week, one of you will present an exercise on the board (mandatory
for having the right to attend to the exam).
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University of Osnabrück Martina Junhke

Institute of Mathematics Germain Poullot

Simplicial Complexes – Summer Semester 2025

Repetitorium 1

Exercise 1 [Counting simplicial complexes ◦]
Show that there are 2(

n
d+1) − 1 pure d-dimensional simplicial complexes on n

vertices (NB: the empty complex is not pure of dimension d).

Exercise 2 [Alexander dual ⋆]
Let ∆ be a simplicial complex on the vertex set [n]. We define

∆∗ = {F ⊆ [n] : [n] \ F /∈ ∆}.

We call ∆∗ the dual simplicial complex or the Alexander dual of ∆. Show that:
(a) ∆∗ is a simplicial complex.
(b) (∆∗)∗ = ∆.
(c) The number of facets of ∆∗ equals the number of minimal non-faces of ∆.
(d) Prove that fk(∆) + fn−k−1(∆

∗) =
(

n
k−1

)
.

(e) [With the theorem of principal decomposition] Suppose that the Stanley-
Reisner ideal of ∆ is generated as follows: I∆ = ⟨xa1 , . . . ,xas⟩ with the
usual notation xai =

∏n
j=1 x

ai,j

j with ai,j ∈ {0, 1}. Show that:

I∆∗ =

s⋂
i=1

⟨xj ; for j ∈ [n], if ai,j = 1⟩

Exercise 3 [Join ⋆]
Let ∆ and Γ be simplicial complexes on disjoint vertex sets V and W . The join
∆∗Γ is the simplicial complex on the vertex set V ∪W with faces F ∪G, where
F ∈ ∆ and G ∈ Γ. Express the h-vector h(∆ ∗ Γ) in terms of h(∆) and h(Γ).

Exercise 4 [Operations on ideals ◦]
Let I, J ⊆ k[x1, . . . , xn] be monomial ideals. Show that:
(a) I ∩ J is a monomial ideal generated by

G(I ∩ J) = {lcm(f, g) : f ∈ G(I), g ∈ G(J)}

(b) I + J is a monomial ideal and G(I + J) ⊆ G(I) ∪G(J).
(c) I · J is a monomial ideal and G(I · J) ⊆ G(I)G(J).

Exercise 5 [Order complex of a poset ⋆]
Let P = (V,≤) be a partially ordered set (i.e., a ≤ a for a ∈ V ; a ≤ b and b ≤ a
imply a = b; and a ≤ b and b ≤ c imply a ≤ c). The order complex of P is the
simplicial complex ∆(P ) of all subsets {v1, . . . , vi} ⊆ V , i ≥ 0, such that (for a
suitable choice of indices) v1 < v2 < . . . < vi. Show that:
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(a) ∆(P ) is a simplicial complex on the vertex set V .
(b) Determine the minimal non-faces of ∆(P ) and the Stanley-Reisner ideal

I∆(P ).
(c) Compute ∆(P ) and I∆(P ) for some partially ordered sets of your choice.

Exercise 6 [r-skeleton ◦]
Let ∆ be a (d−1)-dimensional simplicial complex and ∆⟨r⟩ = {F ∈ ∆ : dimF ≤
r} the r-skeleton of ∆ for 0 ≤ r ≤ d− 1. Compute the f - and h-vector of ∆⟨r⟩

using the f - and h-vector of ∆.

Exercise 7 [Alternating complex ⋆]
Let Ωn = {−1, . . . ,−n, 1, . . . , n}. Let Γn be the set of all subsets F ⊆ Ωn such
that |({−i, i} ∩ F )| ≤ 1 for 1 ≤ i ≤ n.
(a) Show that Γn is a simplicial complex.
(b) Compute the f -vector of Γn.

Exercise 8 [hi are integers ◦]
Show that hi ∈ Z, for all f -vector and all i.

Exercise 9 [h-vectors ◦]
Compute the h-vectors corresponding to these f -vectors using Stanley’s trick:
(a) f(∆) = (1, 6, 12, 8),
(b) f(∆) = (1, 12, 66, 108, 54),
(c) f(∆) = (1, 3, 72, 118, 59).
(d) the f -vector of (the boundary complex of) a simplex
(e) the f -vector of (the boundary complex of) a bi-pyramid over a triangle
(f) the f -vector of (the boundary complex of) an octahedron

Exercise 10 [h-vector of r-skeleton ◦]
Fix a simplicial complex ∆. Draw its Pascal-like triangle to compute its h-vector.
Show that the rth row of this triangle is the h-vector of the r-skeleton ∆⟨r⟩.

Exercise 11 [Multiplication in polynomial ring ◦]
Fix f ∈ F[x1, . . . , xn], and consider the application multf : F[x1, . . . , xn] →
F[x1, . . . , xn], defined by multf (g) = f · g. Show that multf is a linear function,
and write it in matrix form (in the monomial basis) Start with the case of f a monomial.

Exercise 12 [Examples of Stanley-Reisner rings ◦]
For the (d− 1)-dimensional simplex ∆d−1, what’s F[∆d−1]?
For δn the simplicial complex whose facets are all singletons of [n], what’s F[δn]?

Exercise 13 [Truncated boundary of a simplex ⋆]
Let m,n ∈ N with 1 ≤ m ≤ n, Fi = {1, . . . , n} \ {i} for i = 1, . . . ,m, and
∆ = ⟨F1, . . . , Fm⟩ the abstract simplicial complex generated by F1, . . . , Fm.

1. Show that F[∆] = F[x1, . . . , xn]/(x1 · · ·xm).
2. Determine the h-vector of ∆.
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Exercise 14 [A non-zero-divisor in the Stanley-Reisner ring ⋆]
Let ∆ be a simplicial complex on vertex set [n], with f0(∆) = n. Let F[∆] be
its Stanley-Reisner ring with coefficients.

1. Prove that the sum of all vertex variables θ := x1 + x2 + + xn is always
a non-zero-divisor in F[∆].

2. Prove that if ∆ is disconnected, then the quotient ring F[∆]/(θ) contains a
non-zero element of degree 1 annihilated by all elements of positive degree.
Conclude that every element of positive degree is a zero-divisor.

Exercise 15 [Minimal primary decomposition of I∆]
Show that the presentation od Satz 1.17 is irredundant (using the bijection
between Stanley-Reisner ideals and simplicial complexes and Satz 1.17 itself).

Exercise 16 [Size of the basis of the N-grading ◦]
Consider the standard Nn-grading on S = F[x1, . . . , xn]. What’s dimSa ?

Consider the standard N-grading on S = F[x1, . . . , xn]. Show that

dimF Si =

(
n+ i− 1

n− 1

)
for i ∈ N

Exercise 17 [Hilbert series ◦]
Let S = F[X,Y, Z] be the standard graded polynomial ring in three variables
over F. Determine the Hilbert series of the following F-algebras:
(a) F[X,Y, Z]/(XY 3),
(b) F[X,Y, Z]/(XY,XZ,Z2),
(c) F[X,Y, Z]/(XY,XZ).

Exercise 18 [Hilber series (return) ◦]
Is H(t) = 1+2t−t2

(1−t)2 the Hilbert series of a Stanley-Reisner ring?

Exercise 19 [Shellability of 1-dimensional simplicial complexes ◦]

1. Prove that a pure 1-dimensional simplicial complex is shellable if and only
if it is a connected graph.

2. Prove that a pure 1-dimensional simplicial complex is partitionable if and
only if it is a graph with no isolated vertices and at most one connected
component which is a tree.

Exercise 20 [Shellability and deformation retract ◦]
Show that the complex δ is shellable but the complex ∆ is not. Show that there
exists a deformation retract sending ∆ to δ.

•

•

•

•
δ =

•

•

•

•

•

•

• •∆ =
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Exercise 21 [Shelling order ◦]
Find a shelling order for Belspiel 1.24.(iii).

Exercise 22 [Definitions of shellability ⋆]
Show the equivalence of the various definitions of shellability (cf. Definition 5.1).

Exercise 23 [Shellability for star and links ◦]
If ∆ is shellable, show that star∆(F ) and link∆(F ) are shellable for all F ∈ ∆.

Exercise 24 [Stanley-Reisner ring of the complete graph ⋆]
Let ∆ := {∅, 1, 2, 3, 4, 12, 13, 14, 23, 24, 34}, the 1-dimensional simplicial complex
which is the complete graph on 4 vertices.

1. Prove that for a field F, the ring F[∆] contains a linear system of parame-
ters (that is, θ1, θ2 in F[∆] of degree 1, such that F[∆] is finitely generated
as a F[θ1, θ2]-module) if and only if #F ≥ 3, that is, F ̸= F2.

2. Show that the ring Z[∆] contains no pair of degree 1 elements θ1, θ2 ∈ Z[∆]
for which Z[θ1, θ2] is finitely generated over Z[θ1, θ2].

Exercise 25 [Kind-Kleinschmidt criterion for an l.s.o.p. ⋆]
Let ∆ be a (d − 1)-dimensional simplicial complex on [n]. The restriction of a
linear form θ =

∑n
i=1 αixi to a face F ∈ ∆ is defined as θ |F =

∑
i∈F αixi.

1. Prove that linear forms θ(1), . . . , θ(d) ∈ F[x1, . . . , xn] form a l.s.o.p. (linear
system of parameters) for F[∆] if and only if θ(1) |F , . . . , θ(d) |F span an
|F |-dimensional vector space for every face F ∈ ∆.

2. Use the criterion above to show that there is no l.s.o.p. for the boundary
complex of a d-simplex with coefficients in {0, 1}.
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Simplicial Complexes – Summer Semester 2025

Repetitorium 2

Exercise 26 [Homology groups ◦]
Let ∆ be the simplicial complex with facets {1, 2}, {2, 3}, {3, 4}, {1, 4}, {5}. De-

termine the reduced homology groups H̃i(∆; k) for i ≥ 0.

Exercise 27 [Cohen-Macaulay-ness ◦]
Decide whether the following simplicial complexes are Cohen–Macaulay. (In
each case, the set of facets is given.)
(i) F(∆) = {{1, 2, 3}, {3, 4}}
(ii) F(∆) = {{1, 2, 3}, {2, 3, 4}}
(iii) F(∆) = {{1, 2, 3}, {2, 3, 4}, {1, 2, 4}, {1, 3, 4}}
(iv) F(∆) = {{1, 2, 3}, {4, 5, 6}}

Exercise 28 [0th reduced homology ◦]
Let ∆ be a simplicial complex, and G the underlying graph (i.e. G = ∆⟨1⟩ is
the 1-skeleton of ∆). Let T be a spanning forest of G. For each edge f of T ,
consider ef ∈ C1 and its image ∂1(ef ) ∈ C0.

Show that the family of vectors
(
∂1(ef ) ; f edge of T

)
is a basis of Im ∂1.

Deduce H̃0(∆) = Fc−1, with c the number of connected components of ∆.

Exercise 29 [Cohen-Macaulay-ness and operations ◦]
Suppose ∆ is Cohen-Macaulay. Prove that the link lk∆(F ) is Cohen-Macaulay
for any face F ∈ ∆.

Are sub-complexes and stars of Cohen-Macaulay simplicial complexe also
Cohen-Macaulay?

Exercise 30 [Cohen-Macaulay-ness for graphs ◦]
Which graphs are Cohen-Macaulay (use Reisner)? Compare with Exercise 19.

Exercise 31 [Cohen-Macaulay non-shellable ⋆]

Prove that the following simplicial
complex ∆ is Cohen-Macaulay.

Prove that ∆ is contractible but
has no boundary: deduce that ∆ is not
shellable.

Compute its h-vector, and notice
its positivity.
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Exercise 32 [Triangulation of the torus ⋆]

8

9

5

6

1

1

1

1

2

3

4 7

2

3

4 7

Torus S1 × S1

The above simplicial complex ∆ is a triangulation of the torus S1 × S1, all
triangles are full (be careful, even if a vertex is repeated in the drawing, it is
the same vertex in ∆).

0. Understand the drawing on the right side.
1. Compute the f -vector ∆.
2. Write the chain complex of ∆. Write Ker ∂−1, Ker ∂0, and Im ∂0.
3. Find a spanning tree of (the 1-skeleton of) ∆. Deduce Ker ∂1, and Im ∂1.
4. Looking at the chain complex, show that H̃1 = F1+dimKer ∂2 , and

H̃2 = FdimKer ∂2 .
5. Prove that Ker ∂2 = F. (Hint: you need to prove that there is exactly 1 linear

relation between all et for t a triangle in ∆: pick a triangle, suppose that it has coefficient

1 in the linear relation, then deduce all other coefficients.)

6. Deduce all reduced homology groups. H̃1=F2,H̃2=F

7. Conclude that a torus is not homeomorphic to a sphere nor a ball.
8. Is the torus Cohen-Macaulay?
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Exercise 33 [Triangulations of other surfaces ⋆]

1

1

1

1

2

3

4 7

2

3

4 7

Klein bottle

1

1

1

1

2

3

47

2

3

4 7

Projective plane PR2

0

1

0

1

2

3

10 11

2

3

4 7

Cylinder

0

1

1

0

2

3

1110

2

3

4 7

Möbius strip

These simplicial complexes are triangulations of the Klein bottle, the projective
plane, the cylinder, and the Möbius strip: same questions as Exercise 31, and
prove each they are not homeomorphic to one another, nor the torus, nor a ball.
Which of the above triangulation correspond to which drawing?
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Exercise 34 [Triangulation of the projective plane (version 2) ⋆]

1

2

3

6

4 5

1

2

3

The above simplicial complex ∆ is a triangulation of the projective plane,
all triangles are full (be careful, even if a vertex is repeated in the drawing, it
is the same vertex in ∆).

1. Compute the f -vector ∆.
2. Write the chain complex of ∆. Write Ker ∂−1, Ker ∂0, and Im ∂0.
3. Looking at the chain complex, show that H̃1 = H̃2 = FdimKer ∂2 .
4. Find a spanning tree of (the 1-skeleton of) ∆. Deduce Ker ∂1, and Im ∂1.
5. Prove that Ker ∂2 = 0 if 1 ̸= −1 in F, and Ker ∂2 = F if 1 = −1 in F (e.g.

F = Z
2Z ). (Hint: you need to prove that there is exactly 1 linear relation between all

et for t a triangle in ∆: pick a triangle, suppose that it has coefficient 1 in the linear

relation, then deduce all other coefficients.)

6. Deduce all reduced homology groups over all fields. H̃1=H̃2=Fif1=−1inF

7. Conclude that the projective plane is not homeomorphic to a sphere, nor
a ball, nor the torus.

8. Is the projective plane Cohen-Macaulay?
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Exercise 35 [Planar triangulations ⋆]

Consider a planar graph G, drawn in the plane, whose faces are triangles,
except possibly the outer (infinite) face. Let ∆ be the 2-dimensional simplicial
complex whose 0-faces are the vertices of G, whose 1-faces are the edges of G,
and whose 2-faces are all the aforementioned triangles.
Under which conditions (on G) is ∆ Cohen-Macaulay? Shellable? Partitionable?

Exercise 36 [Feasible f -vectors ◦]
Decide whether the following vectors are f -vectors of simplicial complexes. If
so, state such a complex.

a. f = (1, 13, 69, 112, 56)
b. f = (1, 10, 40, 150)

Exercise 37 [Regular lower shadows ◦]
(To checked that your are at easy with notations.)

Let A ⊆ 2[n]. We say that A is k-regular if A ⊆
(
[n]
k

)
. In general, we define

the lower shadow of A to be ∆A =
{
B ∈ 2[n] ; ∃A ∈ A, x ∈ A, B = A\{x}

}
.

1. Show that the above definition of shadows agrees with the one of the
course.

2. Show that the shadow of A is (k− 1)-regular if and only if A is k-regular.
3. Define ∆r+1A = ∆(∆rA) with ∆0A = A. What’s #∆mA for m =

maxA∈A #A.

Exercise 38 [Without Kruskal–Katona ◦]
Let A ⊆

(
[n]
k

)
. Without using Kruskal–Katona theorem, show that:

k

n− k + 1
#A ≤ #∆A ≤ k#A

Compare with Kruskal–Katona theorem.

Exercise 39 [Squashed = co-lexicographic ◦]
Show that the following is an alternative definition of the squashed order:

For A,B ∈
(
[n]
k

)
with A = {a1 > a2 > · · · > ak} and B = {b1 > b2 > · · · >

bk}, we have A ≺ B if and only if there is i ∈ [k] such that ai < bi and aj = bj
for all j < i.

Exercise 40 [Squashed successor ⋆]
Let A be a k-element set of positive natural numbers. Show that: The successor
of A in squashed order is: B = [b] ∪ {a+ 1} ∪ (A\[a]), where a is minimal such
that a ∈ A and a+ 1 /∈ A and b = #(A ∩ [a])− 1.

Exercise 41 [From Kruskal–Katona to Erdös–Ko–Rado ◦]
Use the Kruskal–Katona theorem to prove the Erdös–Ko–Rado theorem, i.e.,
prove the following statement: Let 1 ≤ i ≤ 1

2n and let A ⊆
(
[n]
i

)
such that for

all A,A′ ∈ A we have A ∩A′ ̸= ∅. Then #A ≤
(
n−1
i−1

)
.
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Exercise 42 [LYM inequality and Sperner theorem ⋆]
Sperner theorem state the following: “Let A ⊆ 2[n] such that for all A,A′ ∈ A,
neither A ⊊ A′, nor A′ ⊊ A (such A is called an anti-chain of the boolean
lattice). Then #A ≤

(
n

⌊n/2⌋
)
.”.

In the following, a Sperner family is a family A ⊆ 2[n] such that for all
A,A′ ∈ A, A ̸⊂ A′ and A′ ̸⊂ A. We define Ak = A ∩

(
[n]
k

)
and fk = #Ak.

1. Prove Sperner theorem when A ⊆
(
[n]
k

)
for some k.

2. (Lubell–Yamamoto–Meshalkin inequality) Double-count the pairs (X,σ)
where X ∈ A and σ is a permutation of [n] with X = {σ(1), . . . , σ(#X)}.
Deduce that

∑n
k=0

1

(nk)
fk ≤ 1.

3. Using a clever bound on
(
n
k

)
, deduce Sperner theorem.

4. Consider that biggest ℓ such that Aℓ ̸= ∅, and replace it by its lower
shadow. Show that #∆Aℓ ≥ ℓ

n−ℓ+1#Aℓ.
5. Show that replacing Aℓ by ∆Aℓ, we still have a Sperner family.

Exercise 43 [Lovász formulation ⋆]

Let A ⊆
(
[n]
k

)
, and let B be the collection of the subsets of A of size k−r. Lovász

claims that, for any x > 0, if #A =
(
x
k

)
, then #B ≥

(
x

k−r

)
.

Prove it using Kruskal–Katona theorem.

Recall that for any x > 0, we have:
(
x
k

)
= x(x−1)...(x−k+1)

k! , even when x is
not an integer.

Exercise 44 [r-neighborhood in graphs ⋆]
In a graph G, the r-neighborhood of a vertex v ∈ V (G) is the “ball” of radius r
around v, that is Nr = {u ∈ V (G) ; dist(v, u) ≤ r}. The r-neighborhood of a
set S of vertices of G is naturally Nr(S) = {u ∈ V (G) ; ∃v ∈ S, dist(v, u) ≤ r}.

Let Qn be the graph of the n-dimensional cube. Let A ⊆ V (Qn) such that

#A ≥
∑k

i=0

(
n
i

)
. Show that #Nr(A) ≥

∑k+r
i=0

(
n
i

)
.

Exercise 45 [Iterated Kruskal–Katona ◦]
For A ⊆

(
[n]
k

)
, we define the ℓ-shadow as: ∆ℓA = {B ∈

(
[n]
ℓ

)
; ∃A ∈ A, B ⊆ A}.

Suppose #A = m =
(
ak

k

)
+ . . .

(
aj

j

)
with ak > · · · > aj ≥ j ≥ 1. What is the

smallest size of the ℓ-shadow of A for ℓ ∈ [0, k]?
Re-read Erdös–Ko–Rado theorem and comment.

Exercise 46 [Stronger LYM using Kruskal–Katona ⋆]
Fix (a0, . . . , an), and construct (w0, . . . , wn) with wn = an and
wk = KK(wk+1, k + 1) + ak, where KK(x, ℓ) denotes the Kruskal–Katona
ℓ-reduction of x (i.e. if x =

(
bℓ
ℓ

)
+ · · ·+

(
bj
j

)
, then KK(x, ℓ) =

(
bℓ
ℓ−1

)
+ · · ·+

(
bj
j−1

)
).

Recall that A ⊆ 2[n] is an anti-chain if for all A,A′ ∈ A: A ̸⊂ A′ and A′ ̸⊂ A.
Prove that there is an anti-chain A ⊆ 2[n] with exactly #(A ∩

(
[n]
k

)
) = ak

for all 0 ≤ k ≤ n if and only if w1 ≤ n and w0 ≤ 1.
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Exercise 47 [Kneser graphs ⋆]

The Kneser graph KG(n, k) is the graph with vertex set
(
[n]
k

)
, and edges between

A and B if A ∩B = ∅.
1. Draw KG(5, 2) and try to remember which name people usually give it.
2. For 2k > n, what is KG(n, k)?
3. Show that the chromatic number of the Kneser graph is χ(KG(n, k)) =

n − 2k + 2 for 2k ≤ n. [This is particularly hard at this point: I would
need to make more sub-questions...]

For a graph G, denoting IG the collection of its independent sets (i.e. sub-set
of its vertices pair-wise not adjacent), the fractional chromatic number χf (G)
is the minimum r ∈ R such that for each I ∈ IG, there exists xI ≥ 0 satisfying∑

I∈IG
xI = r and for every vertex v ∈ V (G) we have

∑
I∋v xf ≥ 1.

4. Using n = #V (G) and α(G) = maxI∈IG
#I, show: n

α(G) ≤ χf (G) ≤ χ(G).

5. For n ≥ 2k, show that χf (KG(n, k)) = n
k .

Exercise 48 [Shifting a simplicial complex ⋆]
Let ∆ be a simplicial complex. Recall that a simplicial complex is shifted if for
every face F with i ∈ F and j < i it follows that (F\{i}) ∪ {j} ∈ ∆.

(i) Prove that a pure shifted simplicial complex is shellable. Hint : Consider

the lexicographic order on the facets.

Exercise 49 [Equality case of Erdös–Ko–Rado ◦]
Study the equality case of Erdös–Ko–Rado’s theorem.

Exercise 50 [Using Erdös–Ko–Rado ⋆]

Let A ⊆
(
[n]
k

)
with k ≥ n

2 such that for all A,A′ ∈ A, we have A ∪ A′ ̸= [n].

Show that: #A ≤
(
n−1
k

)
.
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Exercise 51 [Cyclic polytope and realization of a simplicial complex ◦]
Show that a simplicial complex of dimension d is realizable in R2d+1.

Find a simplicial complex of dimension d which is realizable in R2d.
Find a simplicial complex of dimension d which is not realizable in R2d.

Exercise 52 [Other definition of faces of a polytope ◦]
For a polytope P ⊆ Rd and a vector c ∈ Rd, we define Pc = {x ∈ P ; ⟨x, c⟩ =
maxy∈P ⟨y, c⟩}.
Show that F is a face of P if and only if there exists c ∈ Rd such that F = Pc.

Exercise 53 [Simple and simplicial ◦]
Which polytopes are simple and simplicial.

Exercise 54 [Dual polytope ⋆]
What is the polar of the regular n-gon? What is the polar of the standard
d-simplex? What is the polar of the standard d-cube? Of the standard d-cross-
polytope?

For a face F of P with 0 ∈ int(P), consider F♢ :=

{
y ∈ Rd ;

∀x ∈ P, ⟨x,y⟩ ≤ 1
∀x ∈ F, ⟨x,y⟩ = 1

}
.

Show that F♢ is a face of P∗.
Show that

(
P∗)∗ = P, and

(
F♢

)♢
= F.

Show that the lattices of faces of P and of P∗ are dual (i.e. opposite) to each
other.

Exercise 55 [Simplicial/simple polytopes ⋆]
Let P be a polytope of dimension d. Show that the following are equivalent:

1. Every facet of P has d vertices.
2. Every proper face of P is a simplex.
3. Every k-face of P has k + 1 vertices for k ≤ d− 1.
Show that dual version, i.e. the following are equivalent:
a. Every vertex of P lies in d facets.
b. Every vertex of P in d edges.
c. Every k-face of P lies in d− k facets for k ≥ 0.
Let v be a simplex vertex of P, and let P/v be a vertex figure of v in P, that

is a polytope obtained by intersecting P with an hyperplane which separate v
from all other vertices of P. Show that P/v is a simplex.

Deduce that for any subset of edges adjacent to v, there exists a face F of
P which contains exactly theses edges (and no other edge adjacent to v).
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Exercise 56 [Random polytope ◦]
Pick n points X1, . . . , Xn at random in Rd (say, for the uniform distribution in
the cube). Is conv(X1, . . . , Xn) simple or simplicial?

Pick m vectors a1, . . . ,am at random in Rd (say, for the uniform distribution
on the sphere). Is {x ∈ Rd ; ∀i, ⟨x,ai⟩ ≤ 1} simple or simplicial?

Exercise 57 [Set of f -vectors ⋆]
(Pretend to) write the Dehn–Sommerville equation for the f -vector. What type
of equation is it (quadratic, polynomial, exponential, etc)?

Consider the smallest vector space containing all f -vectors of polytopes:
what is its dimension, at most?

Fix d. Show that the f -vectors of Cyc(n, d)∗ are linearly independent, for
d+ 1 ≤ n ≤ d+ ⌊d

2⌋+ 1.
Conclude that the Dehn–Sommerville equations are the only (linear) equa-

tions between f -vectors of simple polytopes.

Exercise 58 [Euler relation for simple polytopes ◦]
Using Dehn–Sommerville equations and F (X − 1) = H(X), deduce the Euler
characteristic (for simple polytopes):

f0 − f1 + · · ·+ (−1)d−1fd−1 = 2

This relation actually holds for any sphere (it is provable using reduced homo-
logy + topology).

Exercise 59 [Euler relation is the only relation ⋆]
Let Pyr(P) = conv{(v, 0) ; v ∈ P} ∪ {(0, 1)}. Compute the f -vector of Pyr(P)
from the f -vector of P.

Define Pyri+1(P) = Pyri(Pyr(P)) and Pyr0(P) = P. Show that the f -vectors
of Pyri([0, 1]d−i) are linearly independent. Deduce that the Euler relation is the
only linear equation on f -vectors of polytopes of dimension d.

Exercise 60 [Trivial inequality ◦]
For any polytope on n vertices, show that fi ≤

(
n

i+1

)
.

Exercise 61 [Lower bound theorem (no proof) ⋆]
For a polytope P and a facet F, a vertex stacking of F in P is a polytope
conv(P ∪ {x}) where x (strictly) satisfies all the inequalities that define P but

does not satisfy the inequality defining F. A n-stacked polytope ∆↑n−d
d−1 is a po-

lytope obtained by stacking n− d times on a d-simplex.
Compute the f -vector of a stacking in term of the vector of P.
Prove that a n-stacked polytope is simplicial, and compute its f -vector (and

show this independently from the chosen sequence of stackings). In particular,
show it has n vertices.

Admits and contemplate the Lower Bound Theorem:
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For all simplicial polytopes P on n vertices:

fi(P) ≥ fi(∆
↑n−d
d−1 )

Exercise 62 [f -vector of 3-polytopes]
Let P be a 3-polytopes, show that its f -vector can be recovered from f0 and f2
only.

In the plane, draw two orthogonal axes, the horizontal being labeled f0 and
the vertical f2. Each axis goes from 0 to 10. Place on this graphic the f -vector
of a 3-simplex, a 3-cube, a 3-cross-polytope (octahedron). Place the f -vectors
of pyramids over n-gons, of prism over n-gons.

At least, how many edges can be adjacent to a vertex of a 3-polytopes?
Deduce that f0 ≤ 2f2−4, and that the equality is satisfied by simple 3-polytopes.
Draw the line f0 = 2f2 − 4 on your graphic.

Dually, at least of how many vertices shall a facet of a 3-polytope contain?
Deduce that f2 ≤ 2f0 − 4, and that the equality is satisfied by simplicial 3-
polytopes. Draw the line f2 = 2f0 − 4 on your graphic.

You now know that the f -vector of a 3-polytope correspond to an integer
point of the cone C you have drawn (defined by f0 ≤ 2f2 − 4 and f2 ≤ 2f0 − 4).
It remains to prove the reciprocal: for each integer point of the cone C, there
exists a polytope whose f -vector correspond to this point.

Interpret P 7→ P∗ on your graphic.
Stack a vertex on the facet of a simplicial 3-polytope, what happens to its

f -vector?
For a polytope P and a vertex v ∈ V (P), a vertex truncation of v in P is a

polytope defined by intersecting P with H+
a,b−ε for Ha,b a supporting hyperplane

of v. Equivalently, a vertex truncation is conv
(
P\v

)
∪{w ∈ v(P) ; w ̸= v}.

By starting with a 3-cross-polytope, then cleverly doing a series of vertex
stacking, then doing a clever vertex truncation, construct a 3-polytope for each
integer point in the cone C. This proves the following the Theorem:

“ A vector (1, f0, f1, f2, 1) is the f -vector of a 3-polytope, if and only if:

f0 − f1 + f2 = 2 , f0 ≤ 2f2 − 4 and f2 ≤ 2f0 − 4

”
Find two 3-polytopes with different face lattices but the same f -vector.
Where is the set of f -vector corresponding to 3-polytopes with k edges for

a given k.
Show that F1 := {f1 ; (1, f0, f1, f2, 1) the f -vector of a 3-polytope} is not

(the integral points of a) convex set, by looking at 3-polytopes with 7 edges.
Compute F1 explicitly.

Exercise 63 [Which ideals are graded? ◦]
Let I ⊆ F[x1, . . . , xn] be an ideal. Show that I is graded if and only if it is
generated by homogeneous elements.
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Exercise 64 [Have you read the lecture notes? ◦]
Prove Theorem 2.6 from the lecture.

Exercise 65 [Chains of modules ⋆]
Let R be a finitely generated graded F-algebra, M0,M1, . . . ,Mn finitely gene-
rated graded R-modules, and

0 → Mn
ϕn→ Mn−1

ϕn−1→ · · · ϕ2→ M1
ϕ1→ M0 → 0

an exact sequence, i.e., the ϕi are homogeneous R-module homomorphisms with
im(ϕi) = ker(ϕi−1) for all i. In particular, ϕn is injective and ϕ1 is surjective.
Show that

∑n
i=0(−1)iH(Mi, j) = 0 holds for all j ∈ Z.

Exercise 66 [Noetherian rings ⋆]
Let R be a commutative ring. An R-module M is called Noetherian if every
submodule of M is finitely generated. Show:

(a) Let M , N be two R-modules and let ϕ : M → N be an R-module homo-
morphism. Then ker(ϕ), ϕ−1(N) and ϕ(M) are R-modules again. If ker(ϕ)
and ϕ(M) are finitely generated, then M is finitely generated.

(b) Let R be a Noetherian ring. Then a finitely generated free R-module is
Noetherian.

(c) Let R be Noetherian and M an R-module. Then M is Noetherian if and
only if M is finitely generated.

Exercise 67 [Graded rings ◦]
Let R be a finitely generated standard graded F-algebra. Show:
(a) dimR = 0 if and only if Ri = 0 for i ≫ 0;

(b) dimR = 1 if and only if there exists a c ∈ N, c > 0 with dimF Ri = c for
i ≫ 0.

Exercise 68 [Hilbert polynomial ⋆]
Let R be a finitely generated standard graded K-algebra, and 0 ̸= M a finitely
generated graded R-module. Show that there exists a polynomial PM ∈ Q[t]
such that

PM (i) = H(M, i) for i ≫ 0.

If dimM = 0, then PM (t) = 0. If Hilb(M ; t) = Q(t)
(1−t)dimM with Q(1) ̸= 0 and

dimM > 0, then you can conclude that

PM (t) =
Q(1)

(dimM − 1)!
T dimM−1 + ( lower degree terms in t).

PM is called the Hilbert polynomial of M .

Exercise 69 [Noether normalization ⋆]
Let S = F[x, y, z], I = (xy, xz2, z3) ⊂ S and R = S/I. Determine a Noether
normalization of R.
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Exercise 70 [Clique complex ⋆]

• Given the simplicial complex on the vertex set [6] with facets {1, 2, 3, 4},
{1, 2, 5}, and {5, 6}, show that ∆ is a clique complex and determine the
corresponding graph.

• Given the simplicial complex on the vertex set [6] with facets {1, 2, 3, 4},
{1, 5}, {2, 5}, and {5, 6}, justify why this is not a clique complex.

Exercise 71 [Cohen-Macaulay graph ◦]
Check whether the following graph is Cohen–Macaulay.

8 4

1

2 9 5 6

7 3

3

Exercise 72 [Dirac’s theorem ◦]
Show that the following graph G satisfies all conditions of Dirac’s theorem for
chordal graphs:

Exercise 73 [Cohen-Macaulay-ness and poset ⋆]
Given the poset Φ (see diagram below):

• Show that Φ is a relatively Cohen–Macaulay complex.
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• Determine the minimal representation Φ = (∆,Γ) with simplicial comple-
xes ∆ ⊆ Γ.

• Is Γ an induced subcomplex of ∆? Justify your answer.

• Show that Φ is not partitionable.

47 45 14 18 19

478 457 458 147 145 148 149 158 189 159

4578 1457 1458 1489 1589
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Discrete Mathematics – Sheet 1

Exercise 1 [Counting simplicial complexes]

A pure d-dimensional simplicial complex on n vertices can be seen as a
collection of facets, which is a (non-empty) collection of subsets of [n] of cardinal

d + 1. There are
(

n
d+1

)
subsets of [n] of cardinal d + 1. Hence, there are 2(

n
d+1)

collections of such subsets; 1 of these collections is empty and shall not be
counted.

Exercise 3 [Join]
We denote by X ⊔ Y the union X ∪ Y when X ∩ Y = ∅.

It is a simplicial complex If E ∈ ∆ ⋆Γ, then there exists F ∈ ∆ and G ∈ Γ
such that E = F ⊔G.

Suppose E′ ⊆ E, then there exists F ′ ⊆ F andG′ ⊆ G such that E′ = F ′⊔G′

(because E is a disjoint union). As ∆ and Γ are simplicial complexes, we have
F ′ ∈ ∆ and G′ ∈ Γ. Thus, be definition, F ′ ⊔G′ ∈ ∆ ⋆ Γ.

Consequently, ∆⋆Γ is a simplicial complex. Moreover, dim(∆⋆Γ) = dim∆+
dimΓ + 1 (we will denote d = d∆ + dΓ + 1).

f-vector and f-polynomial We obviously have
∣∣F ⊔ G

∣∣ = |F | + |G|. The
number of (k − 1)-faces of ∆ ⋆ Γ is its number of faces of cardinality k:

f∆⋆Γ
k−1 =

∑
i+j=k

f∆
i−1 · fΓ

j−1 =

k∑
i=0

f∆
i−1 · fΓ

k−i−1

Consequently, the f -polynomial of ∆ ⋆ Γ is:

F∆⋆Γ(X) =
∑d+1

k=0 f
∆⋆Γ
k−1 Xd−(k−1)

=
∑d+1

k=0

(∑
i+j=k f

∆
i−1 · fΓ

j−1

)
Xd−(k−1)

=
(∑d∆+1

i=0 f∆
i−1 X

d∆−(i−1)
)
·
(∑dΓ+1

j=0 fΓ
j−1 X

dΓ−(j−1)
)

= F∆(X) · FΓ(X)

h-polynomial and h-vector As we know the f -polynomial, it is easy to
deduce the h-polynomial:

H∆⋆Γ(X) = F∆⋆Γ(X − 1) = H∆(X) ·HΓ(X)

Thus: h∆⋆Γ
d−(k−1) =

∑
i+j=k h

∆
d∆−(i−1) · h

Γ
dΓ−(j−1).

Exercise 13 [Truncated boundary of a simplex]
Note that F ⊆ Fi if and only if i /∈ F . Conversely, F ̸⊆ Fi if and only if i ∈ F .
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Stanley-Reisner ideal Hence, if for all i ∈ [m], F ̸⊆ Fi, then then for all i,
i ∈ F . Equivalently, F is a non-face of ∆ if and only if [m] ⊆ F .

So ∆ has a unique minimal non-face, namely [m], and its Stanley-Reisner
ring is F[∆] = F[X1, . . . , Xn]/(X1 . . . Xm).

h-vector, method 1 We start with the f -vector: fk−1 =
(
n
k

)
−
(
n−m
k−m

)
because

choosing a (k − 1)-face amounts to choosing among the subsets of [n] of size k,
but not among the subsets of [n] of size k which contains [m] (these subsets are
in bijection with the subsets of [m+ 1, n] of size k −m).

Thus, we can compute the f -polynomial (note that dim∆ = |F1|−1 = n−2):

F (X) =
∑n−1

k=0 fk−1 X
n−1−k

=
∑n−1

k=0

(
n
k

)
Xn−1−k −

∑n−1
k=m

(
n−m
k−m

)
Xn−1−k

=
∑n

k=1

(
n
k

)
Xk − Xn−m−1

∑n−m−1
k=0

(
n−m
k

) (
1
X

)k
= 1

X

(
(X + 1)n − 1

)
− Xn−m−1

((
1
X + 1

)n−m−1 −
(

1
X

)n−m
)

= 1
X

(
(X + 1)n − (X + 1)n−m

)
= (X+1)m−1

X (X + 1)n−m

Thus:H(X) = F (X−1) = Xn−m−1
X−1 Xn−m. Note that Xn−m−1

X−1 =
∑n−m−1

k=0 Xk,
so:

hk−1 =

{
1 for 1 ≤ k ≤ m
0 else

h-vector, method 2 [Proposed by Anna Birkemeyer] Remark that ∆ is shel-
lable: F1, . . . , Fm is already a shelling order.

Let Gi = [i− 1]. Then we have the partition:

∆ =
⊔
i

[Gi, Fi]

Indeed, if F ∈ ∆, then let j = min(i ∈ [n] ; i /∈ F ). Then Gj ⊆ F ⊆ Fj , but
if i < j, then F ̸⊆ Fi, and if i > j, then Gj ̸⊆ F : the above union is indeed a
partition of ∆ (each face is contained in a unique [Gi, Fi]).

We can use the theorem 1.26 (on h-vector of partiotionable simplicial com-

plexes) from the lecture: hi =
∣∣{j ; |Gj | = i}

∣∣ = {
1 if 0 ≤ i ≤ m− 1
0 else

.
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Exercise 32/33 [Triangulations and homology]
You should obtain (all other H̃i are 0):

char(F) ̸= 2 char(F) = 2

H̃1 H̃2 H̃1 H̃2

Torus F2 F idem idem
Klein bottle F 0 F2 F
Projective plane F 0 F2 F
Cylinder F 0 idem idem
Möbius strip F 0 idem idem
Sphere S2 0 F idem idem
Ball 0 0 idem idem

N.B.: Be very careful, you may find online some different results for the
Klein bottle, the projective plane and the Möbius strip. That’s expected: it
comes from non-orientability problems...
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