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INTRODUCTORY NOTIONS, f -VECTORS
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Attention 1.0.1 Recall that:
Rd is a vector space of finite dimension d. Usually, the vectors are denoted in bold v ∈ Rd. The canonical basis of Rd

is denoted e1, . . . , ed, and for X ⊆ [n] we write eX :=
∑

i∈X ei. The space Rd is endowed with a scalar product denoted

⟨u,v⟩ := ∑d
i=1 uivi ∈ R for u,v ∈ Rd. In reality, almost all we do (especially the computations) will be done in Qd or even Zd,

but we still use Rd in definitions and theorems.

Notation 1.0.2 We use the word “vector” when we think about a linear problem, “point” when we think about affine geometry,
“direction” when we think about a vector in the dual.

We denote [n] = {1, 2, . . . , n}.

Attention 1.0.3 The aim of the exercise is to understand the notions at stake. None of them will be graded (except if we
need to for administrative reasons). If you manage to do an exercise without making a nice drawing, then you should re-do it!
More generally, this course contains very few drawings, the aim being that you (i.e. the reader, the learner) make your own
drawings.

Most of the proofs of the theorem claimed will be done in exercises.
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CHAPTER 1. INTRODUCTORY NOTIONS, f-VECTORS

1.1. BASIC NOTIONS, CONVEXITY, MINKOWSKI-WEYL

Section 1.1

Basic notions, convexity, Minkowski-Weyl

Definition 1.1.1
A set X ⊆ Rd is convex if ∀x,x′ ∈ X and λ ∈ [0, 1], then λx+ (1− λ)x′ ∈ X. The convex hull of a subset X ⊆ Rd is the
smallest convex set that contains X, that is to say: convX =

⋂
X⊆Y, Y convex Y = {∑i λixi ; λi ≥ 0,

∑
i λi = 1, xi ∈ X}.

⋆ Exercise 1.1.2
Make a drawing of a convex an a non-convex set in R2.

Definition 1.1.3
A polytope is defined equivalently as:

• The convex hull of finitely many points P := conv{v1, . . . ,vn} for v1, . . . ,vn ∈ Rd.

• The bounded intersection of finitely many half-spaces P :=
⋂m

i=1

{
x ∈ Rd ; ⟨x,ai⟩ ≤ bi

}
for a1, . . . ,am ∈ Rd and

b1, . . . , bm ∈ R. We usually denote the vector b = (b1, . . . , bm), and the matrix A whose rows are a1, . . . ,am, such
that P := {x ∈ Rd ; Ax ≤ b} where the comparison is coordinate-wise.

The first is called the vertex description and the second the inequality (or facet) description of P.

⋆ Exercise 1.1.4
Is the euclidean ball a polytope? Why?

Is a cone a polytope? Why?

Theorem 1.1.5 — [Minkowski-Weyl]
Both definitions of polytopes are equivalent, that is to say: There exists v1, . . . ,vn such that P = conv{v1, . . . ,vn} if and
only if there exists A ∈ Rm×d, b ∈ Rd such that P := {x ∈ Rd ; Ax ≤ b}.

Definition 1.1.6 — [Affine independence, Dimension]

Points v1, . . . ,vn are affinely independent when

(
1
v1

)
, . . . ,

(
1
vn

)
are linearly independent, that is to say if

∑
i λi = 0 and∑

i λivi = 0, then λi = 0 for all i.
The (affine) dimension of a subset X ⊆ Rd is the cardinal of a maximal affinely independent subset of X. A polytope

of dimension d is usually called a d-polytope.
The affine span of X ⊆ Rd is aff(X) := {∑i λixi ;

∑
i λi = 1, xi ∈ X}.

Definition 1.1.7 — [Standard simplex, Standard cube, Standard cross-polytope, Regular polygon]
The standard (d− 1)-simplex is ∆d−1 := conv{e1, . . . , ed} ⊂ Rd.

The standard d-cube is □d := conv{eX ; X ⊆ [d]}.
The standard d-cross-polytope is ♢d := conv{e1,−e1, . . . , ed,−ed} ⊂ Rd.
The (d, k)-hypersimplex is ∆(d, k) := conv{eX ; X ⊆ [d], |X| = k} ⊂ Rd.
The regular n-gon is conv

{
(cos 2kπ

n , sin 2kπ
n ) ; k ∈ [n]

}
⊂ R2

⋆ Exercise 1.1.8
What are the dimension of the standard (d − 1)-simplex, d-cube and d-cross-polytope, the (d, k)-hypersimplex, the regular
n-gon?

Give a inequality description of the (d−1)-simplex, d-cube and d-cross-polytope, the (d, k)-hypersimplex, the regular n-gon?

2



CHAPTER 1. INTRODUCTORY NOTIONS, f-VECTORS

1.2. FACES, FACE LATTICE, f-VECTOR

Section 1.2

Faces, face lattice, f-vector

Definition 1.2.1 — [Faces]
For a polytope P ⊂ Rd and a direction c ∈ R, the face of P in direction c is:

Pc := {x ∈ P ; ⟨x, c⟩ = max
y∈P

⟨y, c⟩}

The set of all faces of P is F(P) = {∅} ∪ {Pc ; c ∈ Rd}.

Remark 1.2.2 Yes, by convention, ∅ is considered a face of P.

Definition 1.2.3 — [Valid hyperplane]
An hyperplane Ha,b = {x ∈ Rd ; ⟨x,a⟩ = b} naturally define two half-spaces H+

a,b = {x ∈ Rd ; ⟨x,a⟩ ≥ b} and

H−
a,b = {x ∈ Rd ; ⟨x,a⟩ ≤ b}. Such an hyperplane is called a valid hyperplane for a polytope P when either P ⊆ H+

a,b or

P ⊆ H−
a,b.

⋆ Exercise 1.2.4
How many faces does a d-simplex, a d-cube, a d-cross-polytope, the (d, k)-hypersimplex, a n-gon has?

⋆ Exercise 1.2.5
Show that for all proper faces F of P, there exists a valid hyperplane Ha,b with F = P ∩Ha,b. Such an hyperplane is called a
supporting hyperplane for F.

Theorem 1.2.6 A face of a polytope is a polytope.

⋆ Exercise 1.2.7
Prove this theorem.

⋆ Exercise 1.2.8
Let F be a non-empty face of P. Show that F = P ∩ aff(F), where aff(F) is the affine span of F.

Definition 1.2.9 — [Vertices, Edges, Facets, Ridges]
The dimension of a face F ⊆ P is the dimension of F as a polytope.

By convention, dim∅ = −1, it is the only face of dimension −1.
The faces of dimension 0 are called the vertices of P.
The faces of dimension 1 are called the edges of P.
The faces of dimension dimP− 1 (a.k.a. of co-dimension 1) are called the facets of P.
The faces of dimension dimP− 2 (a.k.a. of co-dimension 2) are called the ridges of P.

⋆ Exercise 1.2.10
How many faces of dimension k does a d-simplex, a d-cube, a d-cross-polytope, the (d, k)-hypersimplex, a n-gon has ?

Definition 1.2.11 — [Face lattice]

The face lattice of P is the poset (partially ordered set) LP :=
(
F(P),⊆

)
.

Notation 1.2.12 A polytope is “a” simplex when it has the same face lattice as the one of the standard simplex, and likewise
for “a” cube, “a” cross-polytope, etc. . .This notion will be further explored in Section 2.2 on equivalences between polytopes.

⋆ Exercise 1.2.13
Draw the face lattice of the 3-simplex, a 3-cube, a 3-cross-polytope, the (4, 2)-hypersimplex, a n-gon.

⋆ Exercise 1.2.14
What is the difference between a 2-cube and a 2-cross-polytope? Between (n, k)-hypersimplex and (n, n− k)-hypersimplex?

Draw a very weird 2-cube, a weird 3-cube.
Prove that being a d-simplex is equivalent to being the convex hull of d+ 1 affinely independent points.

Theorem 1.2.15 The face lattice L (P) of a d-dimensional polytope P:

• has a unique minimal element ∅ and a unique maximal element P.

• is a lattice.

• is graded by the dimension, and has total rank d+ 1.

• is atomic and co-atomic.
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CHAPTER 1. INTRODUCTORY NOTIONS, f-VECTORS

1.2. FACES, FACE LATTICE, f-VECTOR

⋆ Exercise 1.2.16
If you do not understand one of these words, ask about it!

⋆ Exercise 1.2.17
Prove that L (P) has a unique minimal element, and a unique maximal element.

⋆ Exercise 1.2.18
Prove that F ∧ G = F ∩ G.

⋆ Exercise 1.2.19
Let v be a vertex of P, and Ha,b a supporting hyperplane for the face {v} of P, i.e. P ⊆ H−

a,b and P ∩Ha,b = {v}. A vertex
figure P/v of v in P is defined as P∩Ha,b−ε for ε > 0 sufficiently small (precisely, let b′ = max{⟨u,a⟩ ; u vertex of P, u ̸= v},
and pick ε such that b′ < b− ε < b).

Show that the face lattice of a vertex figure is isomorphic to the sub-lattice [v,P] of LP.
Deduce that all interval [F,G] of LP is isomorphic to the face lattice of some polytope.
Deduce that all intervals of length 2 in LP has 4 elements, and draw the shape of such interval.
Deduce that LP is graded by the dimension, and has total rank dimP+ 1.

Definition 1.2.20 — [Dual polytope]
For a polytope P with vertex set V (P) = conv{v1, . . . ,vn} such that 0 ∈ int(P), its dual polytope (or polar polytope) is:

P◦ := {y ∈ Rd ; ∀x ∈ P, ⟨x,y⟩ ≤ 1} = {y ∈ Rd ; ∀i, ⟨vi,y⟩ ≤ 1}

⋆ Exercise 1.2.21
What is the polar of the regular n-gon?

What is the polar of the standard d-simplex?
What is the polar of the standard d-cube? Of the standard d-cross-polytope?

⋆ Exercise 1.2.22

For a face F of P with 0 ∈ int(P), consider F♢ :=

{
y ∈ Rd ;

∀x ∈ P, ⟨x,y⟩ ≤ 1
∀x ∈ F, ⟨x,y⟩ = 1

}
. Show that F♢ is a face of P◦.

Show that
(
P◦)◦ = P, and

(
F♢

)♢
= F.

Show that LP◦ ≃ L opp
P = (F(P),⊇).

Using Exercise 1.2.18, conclude that LP is a lattice.

Conjecture 1.2.23 — [Kalai’s cube-simplex conjecture]
For every k ≥ 1, there exists a dimension d such that every polytope of dimension ≥ d has a k-face which is either a
k-simplex or a k-cube.

Definition 1.2.24 — [f-vector]
We denote the set of faces of dimension k of P by Fk(P).

The f -vector of the polytope P is fP := (f−1, f0, f1, . . . , fdimP).

The f -polynomial is FP(X) =
∑d

i=0 fiX
i.

The vertex set of P is V (P) := F0(P).
The edge set of P is E(P) := F1(P).

Remark 1.2.25 There are several definition of the f -polynomial, depending on what the author wants to do with it. Namely:

• F P(X) =
∑d+1

i=0 fi−1X
i

• F̃P(X) =
∑d

i=0 fi−1X
i

• F̂P(X) =
∑d

i=0 fi−1X
d−i

⋆ Exercise 1.2.26
Compute the f -polynomial of a d-simplex F∆d−1

(X), a d-cube F□d
(X), a d-cross-polytope with F̃♢d

(X), a n-gon.

⋆ Exercise 1.2.27
Express FP◦ in term of FP.

Conjecture 1.2.28 — [Kalai’s 3d conjecture]
If P is a centrally symmetric d-polytope (i.e. P = −P), then F (1) =

∑
i fi ≥ 3d, and the equality cases are exactly Hanner

polytopes.
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CHAPTER 1. INTRODUCTORY NOTIONS, f-VECTORS

1.2. FACES, FACE LATTICE, f-VECTOR

Definition 1.2.29 — [h-vector, h-polynomial]

The h-vector of a d-polytope P is the vector hP = (h0, . . . , hd) whose associated h-polynomial HP(X) =
∑d

j=0 hjX
j is

defined by the polynomial relation:
HP(X) = FP(X − 1)

Remark 1.2.30 As for the f -polynomial, the h-vector and h-polynomial may be defined differently in other courses/papers,
depending on what the authors aim at. In particular, for Stanley–Reisner ring, Hilbert–Poincaré series, and Ehrhart theory,
the following definition is more appropriate:

∑dim P
i=0 fi−1(X − 1)dim P−i =

∑dim P
j=0 hjX

dim P−j .

⋆ Exercise 1.2.31
Unravel this polynomial relation to write explicitly the relation between the hj and the fi.

♢ Construction 1.2.32
In order to compute the h-vector from the f -vector, there is a very simple and graphic way. Let’s compute the one of the
3-cube: the f -vector is (8, 12, 6, 1) (we dropped f−1 = 1 on purpose). We write it (in reverse) on the right side of a Pascal-like
triangle, against a line of 1s, and compute iterated subtractions, as follows.

1 —
1 6 —

1 6-1 12 —
1 8 —

1 —

1 —
1 8 —

1 5 12 —
1 5-1 12-5 6 —

1 —

1
1 8

1 5 12
1 4 7 6

1 3 3 1

As a result, we get: h□3
= (1, 3, 3, 1). Recall that F□3

(X) = (X + 2)3, hence H□3
(X) = F□3

(X − 1) = (X + 1)3, which
agrees with our result.
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CHAPTER 1. INTRODUCTORY NOTIONS, f-VECTORS

1.3. SIMPLE POLYTOPES, SIMPLICIAL POLYTOPES, IN-DEGREE VECTORS

Section 1.3

Simple polytopes, simplicial polytopes, in-degree vectors

As we use “vertices” and “edges” for polytope, we (try to) use “nodes” and “arcs” for graphs. There remains surely some
misuses of words in this lecture notes: the reader is invited to point them out.

Definition 1.3.1 — [Linear program]
(In this course,) a (bounded) linear program (P, c) is a couple formed by a polytope P ⊂ Rd, and a direction c ∈ Rd.

We will properly study linear programs in a later course.

Definition 1.3.2 — [(Directed) graph of a polytope]
The graph of a polytope P ⊂ Rd is the graph GP whose node set is the vertex set V (P), and whose arc set is the edge set
E(P).

Once chosen a direction c ∈ Rd, one can define the directed graph of a linear program (P, c) as the directed graph GP,c

whose node set is V (P) and where there is an arc u → v if uv ∈ E(P) and ⟨u, c⟩ < ⟨v, c⟩. The set of directed arcs of GP,c

is denoted Ec(P).
A direction c ∈ Rd is called generic when ⟨u, c⟩ ≠ ⟨v, c⟩ for all edge uv ∈ E(P), that is to say when GP,c is an orientation

of GP.

⋆ Exercise 1.3.3
Prove that generic directions always exists.

What is the minimal degree of a node in GP.

Definition 1.3.4 — [Simple, simplicial]
In a d-polytope, a vertex v ∈ V (P) is simple if v is contained in exactly d edges of P. A d-polytope is simple if all its
vertices are simple, i.e. if GP is d-regular.

A polytope is simplicial if all its facets are simplices.

⋆ Exercise 1.3.5
Among simplices, cubes, cross-polytopes, hypersimplices, and polygons, which are simple, which are simplicial?

⋆ Exercise 1.3.6
Let v ∈ V (P) be a simple vertex. Show that P/v is a simplex.

Deduce that for any subset of edges adjacent to v of cardinal k, there exists a k-face of P that contains these edges.
Deduce also that the dual of a simple polytope is a simplicial polytope, and reciprocally.

⋆ Exercise 1.3.7
Which polytopes are both simple and simplicial?

⋆ Exercise 1.3.8
Show that if c is generic, then GP,c has a unique source and a unique sink. Moreover, if c is generic, show that for every face
F of P, then the restriction of GP,c on the vertices of F also has a unique source and a unique sink.

Definition 1.3.9 — [In-degree vector]
The in-degree of a vertex v ∈ V (P) in a linear program (P, c) is its in-degree in GP,c, i.e. inP,c(v) = |{u ∈ V (P) ; u →
v ∈ Ec(P)}|. The in-degree vector of a linear program (P, c) is the in-degree vector of the directed graph GP,c, that is to
say the vector inP,c whose j-th coordinate is

∣∣{v ∈ V (P) ; inP,c(v) = j}
∣∣.

The out-degree and out-degree vector are defined in the same manner.

Theorem 1.3.10 For a simple polytope P and any generic direction c, one has: inP,c = hP

⋆ Exercise 1.3.11
Think about the version for simplicial polytopes.

⋆ Exercise 1.3.12
Fix a linear program (P, c) where P is simple and c generic. Using Exercises 1.3.6 and 1.3.8, double-count the couples (v,F)
where dimF = i, and v ∈ V (F) is a sink of F in GP,c.

Deduce Theorem 1.3.10.

(Semi-)open problem 1.3.13 Characterize the polytopes P such that there is a generic direction c with inP,c = hP.
Positive example, see: Exercise 2.4.15 (I have other examples if you want.)
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CHAPTER 1. INTRODUCTORY NOTIONS, f-VECTORS

1.4. DEHN–SOMMERVILLE RELATIONS, EULER CHARACTERISTIC

Section 1.4

Dehn–Sommerville relations, Euler characteristic

Theorem 1.4.1 — [Dehn 1905 & Sommerville 1927]
For a simple d-polytope P, one has hi = hd−i.

⋆ Exercise 1.4.2
Pick c generic and consider the in-degree vectors for the linear programs (P, c) and (P,−c). Think about it long enough and
deduce the theorem.

Write the statement in terms of f -vectors.
Think about writing the counterpart for simplicial polytopes.

Corollary 1.4.3 Dehn–Sommerville relations are the only (linear) relations among the f -vectors of simple d-polytopes.

⋆ Exercise 1.4.4
(Wait for the definition of cyclic polytopes in Section 1.5.)

Show that the f -vectors of Cyc(d, n)◦ are linearly independent for d+ 1 ≤ n ≤ d+ ⌊d
2⌋+ 1. Deduce Corollary 1.4.3.

Definition 1.4.5 — [Euler’s characteristic]

The Euler’s characteristic of a d-polytope (non-necessarily simple) is χ(P) =
∑d

i=0(−1)ifi = FP(−1).

⋆ Exercise 1.4.6
Using F (X − 1) = H(X) and Theorem 1.4.1, prove that, for a simple polytope χ(P) = 1.

Theorem 1.4.7 — [Euler relation]
For all polytopes, χ(P) = 1.

⋆ Exercise 1.4.8
See Section 2.F.

Corollary 1.4.9 The relation χ(P) = 1 is the only (linear) equation satisfied by all f -vectors of d-polytopes.

⋆ Exercise 1.4.10
A pyramid Pyr(P) over a polytope P is a polytope whose face lattice is isomorphic to the one of conv{(v, 0) ; v ∈ V (P)}∪{(0, 1)}.

Compute FPyr(P)(X) in term of FP(X).

Let Pyri(P) be defined by Pyri+1(P) = Pyr(Pyri(P)) and Pyr0(P) = P. For a fixed dimension d, pick Pi = Pyri(□d−i).
Computing FPi(X), show that the f -vectors of Pi are independent, and deduce Corollary 1.4.9.
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CHAPTER 1. INTRODUCTORY NOTIONS, f-VECTORS

1.5. CYCLIC POLYTOPES, UPPER BOUND THEOREM

Section 1.5

Cyclic polytopes, Upper bound theorem

We have seen that the f -vector respect some equalities, especially when P is simple (or simplicial). But what about inequalities?
Question: For each i ∈ [d], can one give bounds on fP,i in term of d and fP,0, for all d-polytopes?

Definition 1.5.1 — [Cyclic polytope, moment curve]
For d ≥ 1, the moment curve is the curve defined by the function γd : t 7→ (t, t2, . . . , td).

For t = t1, . . . , tn, the cyclic polytope associated to t is Cyc(d, t) := conv{γd(ti) ; i ∈ [n]}.

⋆ Exercise 1.5.2
A polytope P is said to be k-neighborly when all conv{v ∈ X} for all X ⊆ V (P) with |X| ≤ k is a face of P. A polytope is said
to be neighborly when it is ⌊d

2⌋-neighborly.
Show that if P is k-neighborly, then all its j-faces for j ≤ k are simplices.
Find a neighborly polytope. Comment on how weird it is for a polytope to be neighborly.

⋆ Exercise 1.5.3
Show that the facets of Cyc(d, t) are simplices (Hint: Use a clever polynomial).

Show that a cyclic polytope Cyc(d, t) is neighborly (Hint: Use a clever polynomial).
Show that Cyc(d, t)◦ is simple, and hi(Cyc(d, t)

◦) =
(
n−d+i−1

i

)
for i ≤ ⌊d

2⌋ and hi(Cyc(d, t)
◦) =

(
n−i−1
d−i

)
for i > ⌊d

2⌋.

Theorem 1.5.4 For all t ∈ Rn, the cyclic polytopes Cyc(d, t) have the same face lattice.
Consequently, when we only care about face lattice, we denote Cyc(d, n) a polytope such that there exists t ∈ Rn with

Cyc(d, n) = Cyc(d, t).

⋆ Exercise 1.5.5 — [Gale evenness criterion]
Fix t = (t1, . . . , tn) ∈ Rn. To a subset X ⊆ [n], associate FX = conv{γd(ti) ; i ∈ X}. Prove that FX forms a facet of Cyc(n, t)
if and only if |X| = d and any two elements in [n]∖X are separated by an even number of elements from [n] in the sequence
(t1, . . . , tn).

Deduce the previous theorem.

(Semi-)open problem 1.5.6 Find v1, . . . ,vn with the smallest (positive) integer coordinates such that conv{v1, . . . ,vn}
have the same face lattice as a cyclic polytope.

Theorem 1.5.7 — [Upper bound theorem – McMullen 1970 & Stanley 1975]
For all d-polytopes P with n vertices, one has fi(P) ≤ fi(Cyc(d, n)).

⋆ Exercise 1.5.8
Prove that, for any d-polytope with n vertices, we have fi ≤

(
n

i+1

)
.

⋆ Exercise 1.5.9
Fix a d-polytope P. By slightly modifying the coordinates of the vertices of P, show that there exists a polytope P̃ that is
simplicial, with fi(P) ≤ fi(P̃).

Deduce that it is enough to prove hi(P) ≤ hi(Cyc(d, n)
◦) for P a simple d-polytope with n facets.

Fix a simple d-polytope with n facets. By considering the vertices with in-degree i and the ones with in-degree i+ 1, show
that:

(d− i)hi(P) + (i+ 1)hi+1(P) =
∑

F facets of P

hi(F)

where d− i =
(

d−i
d−i−1

)
and i+ 1 =

(
i+1
i

)
.

Convince yourself that hi(F) ≤ hi(P), and deduce that hi+1(P) ≤ n−d+i
i+1 hi(P).

Deduce that hi(P) ≤
(
n−d+i−1

i

)
for i ≤ ⌊d

2⌋ and hi(P) ≤
(
n−i−1
d−i

)
for i > ⌊d

2⌋.
Conclude.

(Semi-)open problem 1.5.10 For interesting classes of polytopes (e.g. lattice polytopes, centrally symmetric, rotational
invariant, etc), state an upper bound theorem.
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CHAPTER 1. INTRODUCTORY NOTIONS, f-VECTORS

1.6. STACKED POLYTOPES, LOWER BOUND THEOREM

Section 1.6

Stacked polytopes, Lower bound theorem

Definition 1.6.1 — [Vertex stacking, stacked polytope]
For a polytope P and a facet F, a vertex stacking of F in P is a polytope conv(P ∪ {x}) where x (strictly) satisfies all the
inequalities that define P but does not satisfy the inequality defining F.

A n-stacked polytope ∆↑n−d
d−1 is a polytope obtained by stacking n− d times on a d-simplex.

⋆ Exercise 1.6.2
Compute the f -vector of a stacking in term of the vector of P.

Prove that a n-stacked polytope is simplicial, and compute its f -vector (and show this independently from the chosen
sequence of stackings). In particular, show it has n vertices.

Theorem 1.6.3 — [Lower bound theorem – Barnette 1973]
For all simplicial d-polytopes P with n vertices:

fi(P) ≥ fi(∆
↑n−d
d−1 )

Remark 1.6.4 For the proof, see Barnette’s original article [Bar73].

⋆ Exercise 1.6.5
Using duality/polarity, write a similar lower bound theorem for simple polytopes. Especially, construct the operation which is
dual to (simplicial) vertex stacking, and the dual of a n-stacked polytope.

(Semi-)open problem 1.6.6 State a corresponding lower bound theorem for all d-polytopes, see [Xue20, PVTY24].

9



CHAPTER 1. INTRODUCTORY NOTIONS, f-VECTORS

1.G. f-VECTOR OF 2-POLYTOPES AND 3-POLYTOPES

APPENDICE 1.G

f-vector of 2-polytopes and 3-polytopes

⋆ Exercise 1.G.1 — [f-vector of polygons]
Characterize the set of possible f -vectors of polygons.

Show that each possible f -vector correspond to a unique face lattice.

⋆ Exercise 1.G.2 — [f-vector of 3-polytopes]
Let P be a 3-polytopes, show that its f -vector can be recovered from f0 and f2 only.

In the plane, draw two orthogonal axes, the horizontal being labeled f0 and the vertical f2. Each axis goes from 0 to 10.
Place on this graphic the f -vector of a 3-simplex, a 3-cube, a 3-cross-polytope (a.k.a. an octahedron). Place the f -vectors of
pyramids over n-gons, of prism over n-gons.

At most, how many edges can be adjacent to a vertex of a 3-polytopes? Deduce that f0 ≤ 2f2 − 4, and that the equality is
satisfied by simple 3-polytopes. Draw the line f0 = 2f2 − 4 on your graphic.

Dually, at least of how many vertices shall a facet of a 3-polytope contain? Deduce that f2 ≤ 2f0 − 4, and that the equality
is satisfied by simplicial 3-polytopes. Draw the line f2 = 2f0 − 4 on your graphic.

You now know that the f -vector of a 3-polytope correspond to an integer point of the cone C you have drawn (defined by
f0 ≤ 2f2 − 4 and f2 ≤ 2f0 − 4). It remains to prove the reciprocal, i.e. for each integer point of the cone C, there exists a
polytope whose f -vector correspond to this point.

Interpret P 7→ P◦ on your graphic.
Stack a vertex on the facet of a simplicial 3-polytope, what happens to its f -vector?
For a polytope P and a vertex v ∈ V (P), a vertex truncation of v in P is a polytope defined by intersecting P with H+

a,b−ε

for Ha,b a supporting hyperplane of v. Equivalently, a vertex truncation is conv
(
P∖ v

)
∪{w ∈ v(P) ; w ̸= v}.

By starting with a 3-cross-polytope, then cleverly doing a series of vertex stacking, then doing a clever vertex truncation,
construct a 3-polytope for each integer point in the cone C. This proves the following Theorem 1.G.3.

Find two 3-polytopes with different face lattices but the same f -vector.

Theorem 1.G.3 — [f-vector of 3-polytopes]
A vector (1, f0, f1, f2, 1) is the f -vector of a 3-polytope, if and only if:

f0 − f1 + f2 = 2 , f0 ≤ 2f2 − 4 and f2 ≤ 2f0 − 4

(Semi-)open problem 1.G.4 Characterize the set of f -vectors of 4-polytopes.

(Semi-)open problem 1.G.5 — [Fatness]
The fatness of a 4-polytope P is: fat(P) := f1+f2

f0+f3
. Does there exists a number c ∈ R such that fat(P) ≤ c for all 4-polytope?

⋆ Exercise 1.G.6 — [Number of edges]
Where is the set of f -vector corresponding to 3-polytopes with k edges for a given k.

Show that F1 := {f1 ; (1, f0, f1, f2, 1) the f -vector of a 3-polytope} is not (the integral points of a) convex set, by looking
at 3-polytopes with 7 edges.

Compute F1 explicitly.

(Semi-)open problem 1.G.7 For each (f0, f2), one can compute the number of (non-isomorphic) face lattices with this
f -vector, denote by L(f0, f2) this number. One can conjecture two things: (a) L(f0, f2) increases when f0 + f2 increases;
(b) L(f0, k − f0) is unimodal (or more) for fixed k when f0 varies.

In order to convince yourself of this idea, try to color your graphic with a color chart that embodies the number of
non-isomorphic face lattices for each point (f0, f2).
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CHAPTER 2. PERMUTAHEDRON, NORMAL FANS, MINKOWSKI SUMS, DEFORMATIONS

2.1. NORMAL FANS, PERMUTAHEDRON

Section 2.1

Normal fans, Permutahedron

Attention 2.1.1 Recall that a face of a polytope P ⊂ Rd is Pc = {x ∈ P ; ⟨x, c⟩ = maxy∈P ⟨y, c⟩} for c ∈ Rd.

Definition 2.1.2 — [Fan]
A fan F is a collection of cones F =

(
C1, . . . ,Cn

)
where Ci ⊆ Rd, such that (a) if C ∈ F , then every face of C is also in F ;

(b) for all C,C′ ∈ F , the cone C∩ C′ is a face of both C and C′. The set of maximal cones (maximal for containment) of F
is denoted F̂ .

A fan can be:

• essential if there is no sub-space that is common to all the cones, i.e.
⋂

∅ ̸=C∈F̂ C = {0}
• complete if it covers the whole space, i.e.

⋃
C∈F = Rd

• pointed if all its cones are, i.e. the only vertex of C ∈ F is 0 (i.e. C a only 1 bounded face)

The face lattice L (F) := (F ,⊆) of a fan F is the collection of all its cones, ordered by inclusion.

Definition 2.1.3 — [Normal cone, normal fan]
For a non-empty face F of a polytope P, the (outer) normal cone of F in P is the cone NP(F) = {c ∈ Rd ; Pc = F}.

The (outer) normal fan of P is the collection of all its normal cone: NP =
(
NP(F) ; ∅ ̸= F face of P

)
.

As the normal cone of a facets is 1-dimensional, we call normal vector a vector of such cone.
The (inner) normal cones and (inner) normal fan are defined by taking min instead of max in the definition of Pc, that

is to say it is the central symmetric of the outer counterpart.

⋆ Exercise 2.1.4
Compute NP(P).

Draw the normal fan of a n-gon.
What is the normal fan of a 3-cube?

⋆ Exercise 2.1.5
Show that the normal fan is a fan. Is it essential? complete? pointed?

⋆ Exercise 2.1.6
Show that the rays of the normal cone of a face G are the normal vectors of the facets F with G ⊆ F.

Show that L (P) = L opp(NP).

♢ Construction 2.1.7 — [Stereographic projection (of pointed fans)]
The stereographic projection is a bijective projection from a sphere (minus a point) onto a plane: we will use it to visualize
normal fans of 3- and 4-polytopes (and more generally all pointed fans). Indeed, remark that all the information contained in
a normal fan NP can be retrieved from the intersection between NP and the unit sphere (it is just a matter of coning over the
intersection).

The stereographic projection is constructed as follows.
Assume the center of the sphere is 0, and fix a point p on the sphere. This defines a (hyper)plane Hp orthogonal to the

vector p. Each point x ̸= p of the sphere is mapped on the (hyper)plane Hp by casting a ray from p that passes through x:
this rays intersect the (hyper)plane Hp at some image point s(x).

Show that, for a given p, the map x 7→ s(x) is a bijection Sd ∖ {p} → Rd−1.
What is the image by s of a great circle (a great circle is a sphere of dimension d−1 on Sd whose center is also 0)? Distinguish

whether the great circle contains p or not.

⋆ Exercise 2.1.8
Draw the stereographic projection of N□2

, N∆2
, N□3

, N∆3
, N♢3

.

Definition 2.1.9 — [Permutahedron]
The permutahedron is the best polytope. ,
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CHAPTER 2. PERMUTAHEDRON, NORMAL FANS, MINKOWSKI SUMS, DEFORMATIONS

2.1. NORMAL FANS, PERMUTAHEDRON

Definition 2.1.10 — [Permutahedron]
The n-permutahedron is the defined as follows:

Πn := conv



σ(1)
σ(2)
...

σ(n)

 ; σ permutation of [n]


⋆ Exercise 2.1.11
Draw the 2- and 3-permutahedra, labeling each vertex by a permutations.

Draw the (stereographic projection of the) normal of Π4. Label it cleverly.

⋆ Exercise 2.1.12 — [Faces of Πn, braid fan, braid arrangement]
Show that dimΠn = n− 1.

Show that for each permutation σ, the point pσ :=


σ−1(1)
σ−1(2)

...
σ−1(n)

 is a vertex of Πn. How many vertices does Πn has?

An ordered partition is an ordered tuple (B1, . . . , Br) of blocks Bi ⊆ [n], Bi ̸= ∅ satisfying Bi ∩ Bj = ∅ for i ̸= j, and⋃
iBi = [n]. Show that the faces of Πn are in 1-to-1 correspondence with ordered partitions of [n]. Do it by associating to each

ordered partition a cone (the normal cone of the corresponding face).
Deduce that Πn is a simple polytope.
Deduce that the normal fan of Πn, called the braid fan, is induced by an hyperplane arrangement: an hyperplane arrangement

is a collection H = (H1, . . . ,Hm) of (linear) hyperplanes, and the fan it induces is the fan whose maximal cones are (the closure
of) the connected components of Rd ∖

⋃
iHi.

Write down this hyperplane arrangement clearly and give it a name: the braid arrangement. The maximal cones of the
braid arrangement are the braid cones Cσ := {x ∈ Rn ; xσ−1(1) < xσ−1(2) < · · · < xσ−1(n)} for σ a permutation of [n].

⋆ Exercise 2.1.13
Two affine spaces are parallel if their underlying linear sub-spaces are the same. Two faces F,G of a polytope are parallel faces
is aff(F) and aff(G) are parallel affine spaces.

Show that two faces are parallel if and only if their normal cone spans the same (linear) space. Show that two facets are
parallel if and only if their normal vectors are opposite.

Characterize parallel faces of Πn in term of their associated ordered partitions.

⋆ Exercise 2.1.14
The Cartesian product of two polytopes P ⊂ Rd and Q ⊂ Rd′

is P × Q := {(p, q) ; p ∈ P, q ∈ Q} ⊂ Rd+d′
. Show that the

Cartesian product of two polytopes is a polytope.
Show that a face of Πn of dimension k is a product Πk1

× · · · × Πkr
with k1 + · · ·+ kr = k.

What are the possible 2-faces of Πn?

(Semi-)open problem 2.1.15 Let P = (P0,P1,P2, . . . ) be a class of polytopes, one per dimension (i.e. dimPi = i) such
that all the faces of Pi are isomorphic to a product

∏
j1,...,jr

Pj1 × · · · × Pjr where j1, . . . , jr ≤ i.
Find (a lot) of examples of such class P, and detail the properties of such classes. Examples: simplex, cubes, permuta-

hedron, associahedra.
See also Hopf monoids and generalized permutahedra [AA17].

⋆ Exercise 2.1.16 — [Graph of Πn, Coxeter groups]
What are the possible edge directions of Πn? How many edges are there? How many classes of parallelism do they form?

Show that the graph of the permutahedron is isomorphic to the graph whose vertices are the permutations of [n] and where
two permutations are linked if they differ by a transposition.

A Coxeter group is a (non-commutative) group generated by elements r1, . . . , rn which satisfies (rirj)
mij = 1 with mii = 1

(i.e. r2i = 1), and mji = mij ≥ 2 for some (not necessarily all) couples i, j ≤ n. Such a group is characterized by the symmetric
n× n-matrix M =

[
mij

]
i,j
.

Show that for M =


1 3 . . . 3

3 1
. . .

...
...

. . .
. . . 3

3 . . . 3 1

, the associated Coxeter group is the group Sn of permutations of [n] (Hint: associate

each ri with a clever transposition).
The Cayley graph of a group (given via a set of generators R) is the directed graph (possibly infinite) whose vertices are

the element of the group and where there is an edge from g to g′ if there exists r ∈ R satisfying g′ = g r.
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CHAPTER 2. PERMUTAHEDRON, NORMAL FANS, MINKOWSKI SUMS, DEFORMATIONS

2.1. NORMAL FANS, PERMUTAHEDRON

For c = (1, 2, . . . , n), show that GΠn,c is the Cayley graph of Sn seen as a Coxeter group.
Characterize 2-faces of Πn, and show that they correspond to the minimal relations between the generating elements of Sn.

Remark 2.1.17 As you may imagine, it is interesting to look at other Coxeter groups, given by other matrices. In particular,
Sn, seen as above as a Coxeter group, is often called “the Coxeter group of type An”. The permutahedron we are studying
is hence called “permutahedron of type A”, and so on. More often than not, in conference on related subject, you will hear
someone ask at the end of a presentation: “And what about other types?”, “Does your result also works in type B? In type D?
And in exceptional types?”.

One should make a complete course on Coxeter groups at some point... ,

(Semi-)open problem 2.1.18 Which Cayley graph is the graph of a polytope? What does the polytope tells about the
properties of the underlying group?

⋆ Exercise 2.1.19 — [Graph of Πn, weak (Bruhat) order]
Let c = (1, 2, . . . , n). Show that c is a generic direction for Πn. Consider GΠn,c as the Hasse diagram of a poset, called the
weak Bruhat order.

The inversion set of a permutation σ ∈ Sn is the set of couples Inv(σ) =
{
(i, j) ; 1 ≤ i < j ≤ n, σ(i) > σ(j)

}
.

A set of couple is couples X is transitive when if (i, j), (j, k) ∈ X, then also (i, k) ∈ X. Show that a set of couples X ⊆
(
[n]
2

)
is an inversion set of a permutation if and only if X and its complement

(
[n]
2

)
∖X are transitive.

Using inversion sets, show that the weak order is a graded lattice.

(Semi-)open problem 2.1.20 Which lattice is the graph of a polytope? What does the polytope tells about the properties
of the lattice? (see Quotientopes)
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CHAPTER 2. PERMUTAHEDRON, NORMAL FANS, MINKOWSKI SUMS, DEFORMATIONS

2.2. EQUIVALENCES

Section 2.2

Equivalences

Definition 2.2.1 — [Equivalences]
Two polytopes P ⊂ Rd and Q ⊂ Rd′

are:

• Combinatorially equivalent, denoted P ∼ Q, if they have the same face lattice, i.e. L (P) = L (Q)

• Normally equivalent if they have the same normal fan, i.e. NP = NQ.

• Affinely equivalent if one is an affine transformation of the other, i.e. there exists an affine function L : Rd → Rd′

such that L(P) = Q.

• Graphically equivalent if their graphs are the same, i.e. GP = GQ.

• Oriented matroid equivalent1 if P and Q have same dimension and number of vertices, and there exists a labeling
V (P) = {v1, . . . ,vn} and V (Q) = {w1, . . . ,wn} such that for all i1, . . . , id+1 ∈ [n], one has

sign

(
det

((
1
vi1

)
, . . . ,

(
1

vid+1

)))
= sign

(
det

((
1

wi1

)
, . . . ,

(
1

wid+1

)))
.

1We mention here for math culture, we will not discuss it for now.

Remark 2.2.2 You now understand what we mean by “a” simplex, “a” cube, and so on: a polytope combinatorially equivalent
to a simplex, to a cube...

⋆ Exercise 2.2.3
Which equivalences imply the combinatorial equivalence? Which ones are implied by it?

Find two polytopes that are normally but not affinely equivalent, and conversely.

⋆ Exercise 2.2.4 — [Graph equivalent but not combinatorially equivalent]

A bi-pyramid over a polytope P is (a polytope combinatorially equivalent to) BiPyr(P) := conv
(
(P× {0}) ∪ {(0, 1), (0,−1)}

)
.

Understand the graph of a bi-pyramid in term GP. Show that the graph of BiPyr(∆3) and Pyr(BiPyr(∆2)) are the same,
but that they are combinatorially different.

Remark 2.2.5 Why didn’t we show an counter-example in dimension 3? or with simpler polytopes? We will see in Chapter 3
that (a) if P and Q are 3-polytopes with the same graph, then they are combinatorially equivalent; (b) if P and Q are (almost)
simple polytopes with the same graph, then they are combinatorially equivalent.

(Semi-)open problem 2.2.6 Characterize all polytopes P such that if GQ = GP, then Q ∼ P.

⋆ Exercise 2.2.7

Fix v = (v1, . . . , vn) with vi ̸= vj . Prove that Πn and Π(v) := conv


vσ(1)...
vσ(n)

 ; σ permutation of [n]

 are normally equivalent.

(Semi-)open problem 2.2.8 Problem posed by Martin Winter, see his presentation at Santander, January 2024.
A polytope P is centrally symmetric if −P = P where −P := {−x ; x ∈ P}, obviously.
The coordinate symmetry si is the symmetry against the hyperplane Hei,0, i.e. si(ej) = (−1)i=jej . An orthant is

either Rd
+ (called the positive orthant), or obtained from Rd

+ by a sequence of coordinate symmetries. Let O ⊂ Rd be an
orthant, and define UO(P) to be the union of P ∩ O with all its images obtained by a sequence of coordinate symmetries.
A polytope P is locally coordinate symmetric if UO(P) is convex for all orthant O ⊂ Rd.

Find a centrally symmetric polytope which is not combinatorially equivalent to a locally coordinate symmetric polytope.
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CHAPTER 2. PERMUTAHEDRON, NORMAL FANS, MINKOWSKI SUMS, DEFORMATIONS

2.3. MINKOWSKI SUMS, MINKOWSKI SUMMANDS

Section 2.3

Minkowski sums, Minkowski summands

Definition 2.3.1 — [Minkowski sum]
The Minkowski sum of two polytopes P,Q ⊂ Rd is:

P+ Q := {p+ q ; p ∈ P, q ∈ Q}

⋆ Exercise 2.3.2
Prove that P+ Q is a projection of P× Q.

Prove that all the vertices of P+Q are sums of a vertex of P and a vertex of Q. Find an example where the reciprocal does
not hold.

Definition 2.3.3 — [Common refinement of fans]
The common refinement of two fans F , F ′ is the fan whose cones are C ∩ C′ for C ∈ F and C′ ∈ F ′.

⋆ Exercise 2.3.4
Prove that the common refinement of two fans is a fan.

Theorem 2.3.5 The normal fan NP+Q is the common refinement of the normal fans NP and NQ.

Definition 2.3.6 — [Minkowski summands, deformations]
A deformation, a.k.a. Minkowski summand of a polytope P is a polytope Q such that there exists a polytope R and a
dilation factor λ > 0 satisfying P = λQ+ R.

(Semi-)open problem 2.3.7 Pick your favorite polytope, compute all its deformations (for almost any polytope, this has
not been done yet). Hint: wait for the proper course on deformations and indecomposability before doing so. ,

Definition 2.3.8 — [Coarsening of fans]
A complete fan G coarsens a complete fan F , denoted G ⊴ F , if every cone of F is included in a cone of G.

⋆ Exercise 2.3.9
Prove that G coarsens F if and only if every cone of G is a union of cones of F .

Theorem 2.3.10 A polytope Q is a deformation of a polytope P if and only if NQ ⊴ NP. Hence, we denote this by Q ⊴ P.

⋆ Exercise 2.3.11
Prove this theorem.

(Semi-)open problem 2.3.12 A fan is polytopal when it is the normal fan of a polytope. Fix a polytopal fan F , and let
F ′ be the fan obtained as the intersection of F by some (linear) sub-space L. Suppose G′ is a polytopal fan which coarsens
F ′. Under which conditions does there exists a polytopal fan G, coarsening F , such that G′ is the intersection of G by L?

⋆ Exercise 2.3.13
Let Q,Q′ be deformations of P, and λ > 0, t ∈ Rd. Show that λQ ⊴ P, Q+ t ⊴ P, and Q+ Q′ ⊴ P.

Prove that ⊴ is an order relation on the deformations of P.

Definition 2.3.14 — [Lattice of deformations]
The lattice of deformations of P is the poset whose elements are the classes of normally equivalent deformations of P,
ordered by ⊴. Equivalently, it is the poset of fans which coarsens NP, ordered by ⊴.

Remark 2.3.15 We will not prove it is a lattice for now, wait for the proper study of the deformation cone.

⋆ Exercise 2.3.16
Draw the lattice of deformations of Π3: start by drawing the braid fan in dimension 2, then progressively merge its maximal
cones. Compare the result to the lattice of faces of BiPyr(∆2).

Definition 2.3.17 — [Minkowski indecomposability]
A polytope P is Minkowski indecomposable if all its deformations are dilations of itself, i.e. if Q ⊴ P, then Q = λP for
some λ ≥ 0.

⋆ Exercise 2.3.18
Characterize Minkowski indecomposable polytopes of dimension 1 and 2.

Show that every simplex is Minkowski indecomposable.

Remark 2.3.19 We will go back to this notions (deformations & Minkowski indecomposability) in Chapter 4.
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CHAPTER 2. PERMUTAHEDRON, NORMAL FANS, MINKOWSKI SUMS, DEFORMATIONS

2.4. ZONOTOPES, GRAPHICAL ZONOTOPES

Section 2.4

Zonotopes, Graphical Zonotopes

The aim of this section is to study the “easiest” Minkowski sums, that is to say the Minkowski sum of (finitely many) segments.
Besides, we will see the richness of deformations of the permutahedron. The underlying combinatorics of the permutahedron is
the one of permutations, i.e. of sorting a list of number when we are allowed to compare any pair of number: What happens
when we are no longer allowed to compare any pair of number, but just certain pairs? Can we get insights on other combinatorial
problems, like orientation of graphs, by embedding them on (deformations of) the permutahedron?

Definition 2.4.1 — [Zonotopes]
A zonotope is a Minkowski sum of segments, that is to say a polytope that can be written P :=

∑
[vi,wi] for some

vi,wi ∈ Rd.

⋆ Exercise 2.4.2
Prove that zonotope is centrally symmetric (with respect to its barycenter).

⋆ Exercise 2.4.3
Show that the cube is a zonotope.

By thinking the cube as a product, prove that zonotopes are precisely projections of a cube.
Deduce that all the faces of a zonotope are zonotopes.
Show that a 2-dimensional zonotopes is a centrally symmetric 2n-gons.
Reciprocally, suppose that all the 2-faces of P are centrally symmetric polygons. Show that P is a zonotope (Hint: construct

the equivalence relation where two edges which are opposite in a 2-face are equivalent, then “remove” a class of such edges,
and use induction).

⋆ Exercise 2.4.4
Show that the translation of a zonotope is still a zonotope.

Show that the normal fan of a zonotope is induced by an hyperplane arrangement.
Show that Πn is a zonotope (Hint: reverse-engineer the suitable segments from its normal fan).
Deduce that there exists deformations of zonotopes which are not zonotopes.

⋆ Exercise 2.4.5
Prove that every polytope is the deformation of a zonotope.

⋆ Exercise 2.4.6
For V = {v1, . . . ,vm} ⊂ Rd, we construct the induced zonotope Z(V ) =

∑
i[0,vi].

By cleverly tiling Z(V ) into small cubes, prove that:

Vol
(
Z(V )

)
= 2d

∑
1≤i1<···<id≤m

∣∣det(vi1 , . . . ,vim)
∣∣

Show that Vol(Πn) = number of (labeled) trees on n nodes = nn−2

(Semi-)open problem 2.4.7 — [White Whale]
Introduced by Billera, the White Whale is the d-dimensional zonotope

∑
X⊂[d][0, eX ]. Compute the number of vertices of

the White Whale for d ≥ 10. For d = 9, the White Whale has 1 955 230 985 997 140 vertices, see [DHP22].

Definition 2.4.8 — [Graphical zonotope]
The graphical zonotope associated to a graph G = (V,E) is the zonotope ZG :=

∑
ij∈E [ei, ej ] where e1, . . . , en is the

canonical basis of RV .
The weighted graphical zonotope of a graph G = (V,E) endowed with a positive weight w : E → R+ is the zonotope

ZG,w :=
∑

ij∈E w(ij)[ei, ej ].

⋆ Exercise 2.4.9
Construct a zonotope which is not a (weighted) graphical zonotopes.

If ZG has no hexagonal 2-face, what can be said of G?
If ZG is a cube, what can be said of G?

⋆ Exercise 2.4.10
Show that ZKn

is (a translate of) Πn.
Show that if H is a sub-graph of G (i.e. E(H) ⊆ E(G)), then ZH,w is a deformation of ZG for all positive weight w. Deduce

that all weighted graphical zonotopes are deformations of Πn.
Show that if a segment S is part of the definition of a zonotope Z, then S ⊴ Z.
Deduce that the only zonotopal deformations of Πn are the weighted graphical zonotopes (up to translation), and more

generally, the only zonotopal deformations of ZG are the weighted graphical zonotopes ZH,w for H a sub-graph of G.
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CHAPTER 2. PERMUTAHEDRON, NORMAL FANS, MINKOWSKI SUMS, DEFORMATIONS

2.4. ZONOTOPES, GRAPHICAL ZONOTOPES

⋆ Exercise 2.4.11
An acyclic orientation of a graph G = (V,E) is a directed graph D with the same vertex set and edge sets (but oriented) such
that there is no directed cycle in D. The set of acyclic orientations of G is denoted O(G).

Show that the vertices of ZG are in bijection with its acyclic orientations.
An ordered partition of a graph G = (V,E) is a couple (µ, ρ) where µ is a partition of V and ρ ∈ O(G/µ) where G/µ is the

contraction of G on the parts of µ.
Show that the faces of ZG are in bijection with its ordered partitions, and that the face associated to (µ, ρ) is normally

equivalent to ZG/µ.
A topological order of an acyclic orientation ρ ∈ O(G) is an ordering ≼ of the vertices (i.e. a permutation of V ) such that

if an edge is directed u→ v by ρ, then u ≺ v.
Show that for all ρ ∈ O(G), there exists (at least) one topological order, using a graph-theoretic argument.
Let vρ be the vertex of ZG associated to ρ ∈ O(G). Show that the set of topological orders of ρ ∈ O(G) are in bijection

with the set permutations S such that NP(vρ) =
⋃

σ∈S Cσ, where Cσ are the braid cones defined in Exercise 2.1.12.

⋆ Exercise 2.4.12 — [Happy-edge & non-leaving-face properties]
Before coming back to graphical zonotope, let’s look at the following problem. A n-bit sequence is a s ∈ {0, 1}n. A flip of a bit
sequence consist in changing the value of 1 bit. Fix two n-bit sequences s and s′: show it is possible to flip bits from s to s′

while never flipping a bit on which s and s′ agree, use the existence of a certain polytope to (almost) immediately get a proof.
Let’s do solve similar problem on graphs. Fix a graph G. A re-orientation of an acyclic orientation is another acyclic

orientation which differs on the orientation of a single edge.
Consider two acyclic orientations ρ and ρ′. Show that there exists a sequence of re-orientation which goes from ρ to ρ′.
Let G1, . . . , Gr be disjoint induced sub-graphs on which ρ and ρ′ agrees (i.e. give the same orientation to the edges). Show

that there exists a sequence of re-orientation which goes from ρ to ρ′ and never modify the orientation of an edge in any Gi.

Remark 2.4.13 It is usual in graph theory of more generally in combinatorics to define a collection of “configurations”, and a
notion of “flip” or “adjacency” (see bases of matroids, Catalan families, permutations, etc. . . ). This gives rise to a very large
graph of flips Γ whose vertex set is the collection of configurations, and two configurations are linked if they differ by a flip.
A first usual question is “Is the graph of flip Γ connected?” and a second question is “Given two configurations C1, C2, and
C1 ∩C2 the sub-configuration shared by C1 and C2, are C1 and C2 connected using only configurations containing C1 ∩C2, i.e.
is Γ |C1∩C2 connected?”. The second question is called having the happy-edge property.

If one managed, as for binary trees, permutations, bit sequences, acyclic orientations of graphs, etc, to embed the con-
figurations into the vertices of a polytope, and the flip into the edges of this polytope, then the answer of both questions is
immediately “yes”, because graphs of polytopes (and hence graphs of its faces) are connected graphs.

Moreover, one can ask for a strong happy-edge property: “Is the shortest path from C1 to C2 in Γ contained in Γ |C1∩C2 ?”,
in a word, is keeping the shared part untouched the best way to flip from one configuration to another? If one benefits from a
polytopal realization, then this amounts to ask for the shortest path between two vertices to be contained in the minimal face
to which these two vertices belong. The later is called the non-leaving-face property.

⋆ Exercise 2.4.14 — [Volume of ZG]
Show that the volume of a graphical zonotope is the number of its (labeled) spanning trees.

⋆ Exercise 2.4.15 — [A graphical zonotope with nice in-degree vector]
(With your computer, if you want.)

Let G be the graph on vertices 0, 1, 2, 3 with edges 02, 03, 12, 13, 23.
Is ZG a simple polytope ?
Compute the f -vector of ZG. Deduce the h-vector of ZG.
Find a direction c such that inc(ZG) = hZG

. Hint:c=(0,0,1,2)isanicedirection.

(Semi-)open problem 2.4.16 Characterize the graphs G such that there exists a direction c satisfying inc(ZG) = hZG
.
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CHAPTER 2. PERMUTAHEDRON, NORMAL FANS, MINKOWSKI SUMS, DEFORMATIONS

2.E. HYPERGRAPHIC POLYTOPES, NESTOHEDRA

APPENDICE 2.E

Hypergraphic polytopes, nestohedra

In the same flavor as for zonotopes, one can define Minkowski sums of (faces of) standard simplices. We will only define the
counter-part of (weighted) graphical zonotopes, but the reader can easily imagine the rest. These polytopes are harder to study
than zonotopes but still exhibit nice properties.

Definition 2.E.1 — [Hypergraphs]
An hypergraph H = (V,C) is (just) a collection of subsets on n nodes, i.e. C = (X1, . . . , Xk) with Xi ⊆ [n]. The subsets
Xi are called the blocks or hyperedges of the hypergraph.

Usually, one avoids |Xi| = 0 or |Xi| = 1 in an hypergraph.
When |Xi| = 2 for all i, the hypergraph is simply called a graph.
If for all X,Y ∈ C with X ∩ Y ̸= ∅, one has X ∪ Y ∈ C, then the hypergraph is called a building set.

Definition 2.E.2 — [Hypergraphic polytopes]
For X ⊆ [n], we denote ∆X := conv{ei ; i ∈ X} with e1, . . . , en the canonical basis of Rn.

The hypergraphic polytope of the hypergraph H = (V,C) is:

PH =
∑
X∈C

∆X

When H is a building set, then PH is called a nestohedron.
The weighted version is defined naturally by endowing H = (V,C) with a weight function w : C → R+, and constructing

PH,w :=
∑

X∈C w(X)∆X .

⋆ Exercise 2.E.3
Check that when H is a graph, then the (weighted) hypergraphic polytope is just the usual (weighted) graphical zonotope.

Show that all (weighted) hypergraphic polytopes are deformations of Πn.

⋆ Exercise 2.E.4
Show that nestohedra are simple polytopes.

(Semi-)open problem 2.E.5 (Probably not too complicated.) Characterize the simple hypergraphic polytopes.
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CHAPTER 2. PERMUTAHEDRON, NORMAL FANS, MINKOWSKI SUMS, DEFORMATIONS

2.F. CAYLEY POLYTOPES, VALUATIONS: A PROOF OF EULER’S RELATION (WITHOUT TOPOLOGY)

APPENDICE 2.F

Cayley polytopes, valuations: a proof of Euler’s relation (without topology)

Definition 2.F.1 — [Valuations]
A weak valuation is a function ϕ which maps a polytope to some element of a group, such that for all hyperplanes H and
polytope P (recall that H+ and H− are the two half-spaces defined by H):

ϕ(P) + ϕ(P ∩H) = ϕ(P ∩H+) + ϕ(P ∩H−)

A strong valuation is a function ψ which maps a polytope to some element of a group, such that for all polytopes P and
Q, if P ∪ Q is a polytope, then:

ψ(P) + ψ(Q) = ψ(P ∪ Q) + ψ(P ∩ Q)

Theorem 2.F.2 If a function is a weak valuation on polytope, then it is a strong valuation on polytopes, and reciprocally.
Hence, such a function is simply called a valuation.

⋆ Exercise 2.F.3
Prove that, for polytopes, a function is a weak valuations if and only if it is a strong valuation.

⋆ Exercise 2.F.4
Show that the volume of a polytope, its number of integer points, the indicator function are valuation.

⋆ Exercise 2.F.5
Prove that Euler’s characteristic χ(P) =

∑d
i=0(−1)ifi is a valuation.

Definition 2.F.6 — [Cayley polytopes]
For polytopes P1, . . . ,Pk ⊂ Rd their Cayley polytope is defined as the polytope in Rk+d:

Cay(P1,P2, . . . ,Pk) = conv
(
{e1} × P1, {e2} × P2, . . . , {ek} × Pk

)
Remark 2.F.7 Most often than not, this definition is applied for k = 2. It is then combinatorially equivalent

to conv
(
{0} × P1, {1} × P2

)
. For this reason, some authors like to define the general case

via Cay(P0,P1, . . . ,Pk) = conv
(
{0} × P0, {e1} × P1, . . . , {ek} × Pk

)
.

⋆ Exercise 2.F.8
Fix P,Q, and use the definition Cay(P,Q) = conv

(
{0} × P, {1} × Q

)
.

Show that the section of Cay(P,Q) by an hyperplane He0,λ for λ ∈]0, 1[ is normally equivalent to P+ Q.
Deduce the f -vector of Cay(P,Q) as a function of the f -vectors of P, Q and P+ Q.
Deduce that χ(Cay(P,Q)) = χ(P) + χ(Q)− χ(P+ Q).
Deduce that if χ(P′) = 1 for all (d− 1)-dimensional polytopes P′, then χ(P) = 1 if P is a d-dimensional polytope that can

be written as a Cayley polytope.
Fix a d-dimensional polytope P and a direction c ∈ Rd such that no two vertices of P have the same scalar product with

c (prove that such c exists). Cut P by the hyperplanes Hc,⟨v,c⟩ for v ∈ V (P). Conclude that χ(P) = 1 for all polytopes (i.e.
prove Theorem 1.4.7), using the fact that χ is a valuation.

(Semi-)open problem 2.F.9 Characterize which polytopes are (affinely equivalent) to Cayley polytope of length r, and
how to efficiently recognize one.

If you know lattice polytopes and h∗-vectors, note that tt has been proven that any lattice polytope whose h∗-polynomial
is of degree s, is a Cayley polytope of lattice polytopes in dimension ≤ (s2 + 19s − 4)/2. Prove that the latter inequality
can be replaced by ≤ s. See Theorem 5.10 in Haase–Nill–Paffenholz’s course.
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CHAPTER 3. GRAPHS OF POLYTOPES

3.1. GRAPHS, SKELETONS

Section 3.1

Graphs, skeletons

Reminder from Section 1.3

Definition 3.1.1 — [(Directed) graph of a polytope]
The graph of a polytope P ⊂ Rd is the graph GP whose node set is the vertex set V (P), and whose arc set is the edge set
E(P).

Once chosen a direction c ∈ Rd, one can define the directed graph of a linear program (P, c) as the directed graph GP,c

whose node set is V (P) and where there is an arc u → v if uv ∈ E(P) and ⟨u, c⟩ < ⟨v, c⟩. The set of directed arcs of GP,c

is denoted Ec(P).
A direction c ∈ Rd is called generic when ⟨u, c⟩ ≠ ⟨v, c⟩ for all edge uv ∈ E(P), that is to say when GP,c is an orientation

of GP.

⋆ Exercise 3.1.2
Among the following graphs, which ones would you guess are graphs of polytopes, and why? Complete graph, complete bipartite
graph, path, cycle, star, wheel, graphs of (truncated) Platonic solids, Johnson graph, Petersen graph, Dürer graph, Herschel
graph, Fullerene graph,...

Definition 3.1.3 — [Skeleton]
The k-skeleton of a polytope P is the sub-poset of L (P) defined by all its j-faces for j ≤ k.

⋆ Exercise 3.1.4
For which polytopes is the k-skeleton of P a simplicial complex (for k < dimP)?

Definition 3.1.5 — [Incidence graphs]
The (i, j)-incidence graph of a polytope P is the graph whose nodes set is the set of i-faces of P, i.e. Fi(P), and where two
faces are linked if they belong to a common j-face.

The k-incidence graph of P is its (k, k + 1)-incidence graph.
The facet-incidence graph of P is the line graph of its (d− 2)-incidence graph, that is to say the graph whose node set

is the set of facets of P and two facets are linked if they share a ridge (a co-dimension 2 face).
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CHAPTER 3. GRAPHS OF POLYTOPES

3.2. DIAMETER

Section 3.2

Diameter

Definition 3.2.1 — [Diameter]
The diameter δ(P) of a polytope P is the diameter of its graph, i.e. the maximum distance between two of its vertices.

We denote δ(d, n) to be the maximum diameter of d-polytopes with n vertices.

⋆ Exercise 3.2.2
Compute the diameter of simplices, cubes, hypersimplices, permutahedra, etc.

Theorem 3.2.3 Here are some known bounds on n and d:

Santos 2011 δ(d, n) > n− d for d ≥ 43

Kalai & Kleitman 1992 δ(d, n) ≤ n2+log2 d

Barnette 1967, Larman 1970 δ(d, n) ≤ 1
3 2

d−2n

Remark 3.2.4 To prove the first statement, Santos constructed a polytope (through spindles) with 86 facets in dimension 43.
He then improved his example to (around) half this dimension, but the existence of a low-dimensional example is still open.

Conjecture 3.2.5 — [Polynomial Hirsch conjecture]
Is δ(d, n), the maximum diameter of d-polytopes with n vertices, bounded by a polynomial of n and d?
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CHAPTER 3. GRAPHS OF POLYTOPES

3.3. BALINSKI’S THEOREM

Section 3.3

Balinski’s theorem

Definition 3.3.1 — [Connectedness of a graph]
A graph G is (vertex) d-connected if removing any d− 1 of its nodes do not disconnect the graph.

Theorem 3.3.2 — [Menger, 1927]
If a graph is d-connected, then for any two vertices, there exists disjoint d paths linking them, where “disjoint” means no
two paths share a node.

Remark 3.3.3 This theorem gives some background on connectivity, we do not prove it (we use it at the end of this chapter).

⋆ Exercise 3.3.4
Show that the nodes of a d-connected graph have degree at least d.

Show that the vertices of a d-polytope are of degree at least d in GP.

Theorem 3.3.5 — [Balinski, 1961]
The graph of a d-polytope is d-connected. Indeed, if X ⊆ V (P) disconnects GP, then the affine dimension of X is ≥ d.

⋆ Exercise 3.3.6
Show that the second sentence implies the first.

Fix a d-polytope P and a set X ⊆ V (P) of affine dimension ≤ d− 1. Fix a vertex u /∈ X.
Show there is an hyperplane Hc,b containing X and u.
Let V + = {v ∈ V (P) ; v /∈ X, ⟨u, c⟩ ≥ b}, and V − = {v ∈ V (P) ; v /∈ X, ⟨u, c⟩ ≤ b}. Finally, let vmin ∈ V (P−c) and

vmax ∈ V (Pc). Show that V (P)∖X = V + ∪ V −. Under which conditions vmin ∈ X (resp. vmax ∈ X)? Show that any v ∈ V +

is connected to vmax and reciprocally for V −. Conclude.

⋆ Exercise 3.3.7
Find a d-polytope whose graph is not (d+ 1)-connected. Hint:bi-pyramid

Theorem 3.3.8 — [Perles & Prabhu, 1993]
For a d-polytope P and a k-face F, the graph GP − V (F) is max(1, d− k − 1)-connected.

⋆ Exercise 3.3.9
Twist the proof of Balinski’s theorem to prove Perles & Prabhu’s theorem.

⋆ Exercise 3.3.10
Find a d-polytope and a k-face such that GP − V (F) is not (d− k − 1)-connected.

⋆ Exercise 3.3.11
Show that any k-face of a d-polytope has degree at least (k + 1)(d− k) in the k-incidence graph.

Theorem 3.3.12 — [Athanasiadis, 2009]
If k ̸= d− 2, then k-incidence graph of a d-polytope is (k + 1)(d− k)-connected.

⋆ Exercise 3.3.13
Fix k ≥ 3 (for the case k = 2, look at Athanasiadis article [Ath09]). Let Gk(P) be the k-incidence graph of P. Pick U ⊆ Fk(P)
with #U ≤ (k + 1)(d− k)− 1. For a face F of P, denote U |F = {G ∈ U ; F ⊆ G}.

Consider the set X :=
{
v ∈ V (P) ; #U |v ≥ k(d− k)

}
. Fix v1, . . . ,vk+1 ∈ X. Building the intersection one step at a time,

show that #
⋂k+1

i=1 U |vi
≥ k, and deduce that the affine dimension of (v1, . . . ,vk+1) is at most k − 1. Deduce that the affine

dimension of X is at most k − 1 < d.
Fix F,F′ ∈ Fk ∖ U , and deduce from the previous that V (F)∖X and V (F′)∖X are non-empty.
Hence, let vF,vF′ /∈ X be vertices of F, F′. Show there exists a path P from vF to vF′ in GP −X. Balinski

Using k ≥ 3, show that
(
d−1
k−1

)
≥ k(d− k). Deduce that each edge e of P is contained in ≤

(
d−1
k−1

)
− 1 elements of U . Deduce

that each edge e of P is contained in a k-face Fe /∈ U .
Consider two consecutive edges e, e′ of P, with v their common node. Remember that #Uv < k(d − k), consider the

(k − 1)-incidence graph of the vertex figure P/v, and deduce that Fe and Fe′ are connected in Gk(P)− U .
Conclude by showing that Gk(P)− U is connected.

(Semi-)open problem 3.3.14 — [Pineda-Villavicencio, 2024, [PV24, Problem 4.7.8]]
Characterize d-polytopes whose graphs are critically d-connected (i.e. removing any d vertices disconnect the graph), and
those whose graphs are minimally d-connected (i.e. there exists d vertices whose removable disconnect the graph).
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CHAPTER 3. GRAPHS OF POLYTOPES

3.4. STEINITZ’ THEOREM

Section 3.4

Steinitz’ theorem

♢ Construction 3.4.1 — [Schlegel diagram]
Consider a polytope P and facet F. Pick a point p /∈ P “close to F”, that is to say p satisfies all the inequalities defining P
except the one of F.

For every point x ∈ P, let p ·x be the intersection of the segment [p,x] with F. Show that p ·x is well defined for all x ∈ P.
Besides, let p · G = {p · x ; x ∈ G} for a face G ̸= F of P. Show that p · G is a polytope if G is a polytope, and that it is
combinatorially equivalent to G.

The Schlegel diagram of P on F (with respect to p) is the subdivision of F defined by p · G for all faces G ̸= F of P. Show
that the Schlegel diagram is indeed a polytopal subdivision (i.e. it is a collection of polytopes, all whose faces are also in the
collection, and where two polytopes of the collection intersect on a common face).

The Schlegel diagram is naturally embedded in aff F, hence it is (dimP−1)-dimensional, which is nice for making drawings.
However, the drawback is that we get a subdivision: for a usual polytope, no-one care about its interior, but for a diagram, the
interior is the most important part, and it is tricky to visualize.

Draw Schlegel diagrams of your favorite 3- and 4-dimensional polytopes.

⋆ Exercise 3.4.2
Thanks to the Schlegel diagram, show that the graph of a 3-polytope is a planar graph.

Theorem 3.4.3 — [(weak version of) Whitney, 1933, Tutte, 1963]
If two 3-polytopes have the same graph, then they have the same face lattice.

⋆ Exercise 3.4.4
A cycle in a graph is non-separating if its removal does not disconnect the graph.

Fix a 3-polytope P. Show that the graphs of its 2-faces are precisely the non-separating cycles of its graph.
Conclude.

⋆ Exercise 3.4.5
Show that a planar graph have a vertex of degree 5 or less. Deduce that every 3-polytopes have either a triangular, quadrangular,
or pentagonal face.

Theorem 3.4.6 — [Steinitz, 1922]
A graph is the graph of a 3-polytope if and only if it is planar and (vertex) 3-connected.

Remark 3.4.7 In dimension 3, knowing if a graph G = (V,E) is polytopal is easy: test its planarity and its 3-connectivity.
This takes linear time in the product |V | · |E|.

In higher dimensions ≥ 4, Universality theorem of Mnëv and Richter-Gebert [RG96, Theorem 9.1.2] implies that knowing if
a graph is polytopal is NP-hard (it is a bit more subtle than that actually, and still unclear as far as I know: given a lattice, it is
NP-hard to prove this lattice is polytopal, but given a graph, there may exists a lattice of faces inducing it whose polytopality
is easy to decide).

⋆ Exercise 3.4.8
Show that the graph of a 3-polytope is planar and 3-connected.

We are not really going to prove the converse, and refer to [Zie95, Chapter 4].
Step 1: Prove that if G is a planar graph (you can suppose it has no vertex of degree 1 nor 2), then it has either a triangular

face or a vertex of degree 3.
Step 2: If v if a vertex of degree 3 of a 3-polytope P, with neighbors u1,u2,u3, then show that there exists another polytope

Q, obtained by adding 1 inequality to P, such that u1u2u3 is a triangular face of Q and v has been removed from Q (be careful
of the different cases).

Think about the dual/polar statement.
Think about its interpretation in the world of graphs (called a ∆Y -move).
Step 3: [that’s the thing we are not going to do here !] Prove that any planar 3-connected graph can be constructed from

K4 by performing a sequence of ∆Y -moves, and conclude.

⋆ Exercise 3.4.9
Show that any graph is the sub-graph of the graph of a 4-dimensional polytope.

TakeCyc(4,n)anditsgraph,thenmakesomeedgesdisappearbyaddingvertices.
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Section 3.5

Reconstruction problems

Definition 3.5.1 — [Reconstruction problem]
We say that objects are reconstructible from their image under φ among a class C of objects if the application φ : C → C′

is injective.
A reconstruction problem is hence a question like “Are 3-polytopes reconstructible from their graphs?”, meaning “Does

their exists two 3-polytopes which have the same graph but not the same face lattice?”.

⋆ Exercise 3.5.2
Are 3-polytopes reconstructible from their graphs?

⋆ Exercise 3.5.3
Show that d-polytopes are reconstructible from their (d− 2)-skeleton.

Theorem 3.5.4 — [Blind & Mani-Levitska 1987, Kalai 1988]
Simple polytopes are reconstructible from their graph.

⋆ Exercise 3.5.5 — [Kalai’s proof]
For an acyclic orientation ρ of GP, denote L(ρ) =

∑
j hj2

j where hj is the number of vertices of in-degree j in ρ.
Fix ρ. Double-count (X,v) where v ∈ V (P) and X is a subset of in-going arcs at v; especially, show that L(ρ) ≥ |F(P)| − 1

(i.e. the number of non-empty faces of P). What are the equality cases?
An acyclic orientation is good if L(ρ) = |F(P)| − 1. Show that if c is generic, then GP,c is a good orientation.
In an acyclic orientation, a sub-graph induced by W ⊆ V is initial if all its xy with x ∈ W and y /∈ W are oriented x→ y.

Show that for all k-faces F of P, there exists a good orientation of GP such that GF is a k-regular initial sub-graph.
Finally, show that if an induced sub-graph H is a k-regular initial sub-graph in a good orientation ρ of GP, then its set of

vertices is the set of vertices of some k-face of P. Too hard:
rework

— Ger.

Hint:Firstlookatthe(unique)sinkvofH,thentaketheincomingedgesatvinH,andconstructak-faceFoutofthem,andconcludethatGF=Hbydouble-inclusion.

Conclude by proving the above theorem.

⋆ Exercise 3.5.6
How difficult is it to implement this proof in a computer in order to deduce a face lattice from a regular polytopal graph?

Theorem 3.5.7 — [Doolittle, Nevo, Pineda-Villavicencio, Ugon, Yost, 2019]
Polytopes with at most 2 non-simple vertices are reconstructible from their graph.

Remark 3.5.8 Read the paper to get the proof, [DNPV+19], it is an adaptation of Kalai’s proof.

(Semi-)open problem 3.5.9 Are polytopes with at most d− 2 non-simple vertices reconstructible from their graph and
dimension?

⋆ Exercise 3.5.10 — [Joswig & Ziegler non-cube [JZ00, Section 4]]
Consider the following polytope P ⊂ R4 (whose 32 vertices are in column):

−2 −2 −1 −2 −1 −2 −1 −1 1 1 2 1 1 1 2 2 −1 1 2 1 −1 2 1 2 −2 2 −2 2 −2 −1 −1 −2
−2 2 1 2 −1 −2 1 −1 1 1 −2 1 −1 1 2 −2 −1 −1 −2 −1 1 −2 −1 2 −2 2 −2 2 2 1 −1 2
−1 −1 −2 −1 −2 −1 −2 −2 2 2 1 −2 2 −2 −1 1 2 2 −1 −2 2 −1 −2 1 1 −1 1 1 1 2 2 1
−1 −1 2 1 2 1 −2 −2 2 −2 1 −2 −2 2 −1 −1 −2 2 −1 2 −2 1 −2 1 −1 1 1 −1 −1 2 2 1

Its inequalities are:
±xi ≤ 2 for i ∈ {1, 2, 3, 4}
±xi ± xj ≤ 3 for i ∈ {1, 2}, j ∈ {3, 4}

Show (with your computer) that P is a 4-dimensional polytope whose graph is the graph of the 5-dimensional cube. Comment
this fact in regard of the reconstructibility of simple polytopes.
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Section 3.6

Catalan families, Associahedron

Perhaps the uttermost example of the interplay between combinatorics and polytopes is the link between Catalan families and
the the associahedra. It gathers the quintessence of what we have studied so far: we will focus on combinatorics for some time
before going back the polytopes.

Definition 3.6.1 — [Triangulations of n-gons]
A triangulation of a convex (n+2)-gon Pn+2 is a set of n triangle whose vertices are among the vertices of Pn+2 and which
are not pairwise intersecting. The set of triangulations of Pn+2 is denoted Tn.

The diagonals of the triangulation are its n− 1 interior edges (i.e. not the edges of Pn+2).
Two triangulations T, T ′ ∈ Tn differ by a flip if they share all but 1 diagonal. The graph of flips is the graph whose

nodes are the triangulations, and arcs are between triangulations that differ by a flip.

⋆ Exercise 3.6.2
For a square, a pentagon and an hexagon, draw/count all triangulations, and draw the graph of flips.

Are these graphs of flips polytopal? If yes, comment on the combinatorics of the faces.

Definition 3.6.3 — [Catalan numbers]
The n-Catalan number is Cat(n) = 1

n+1

(
2n
n

)
.

⋆ Exercise 3.6.4 — [Catalan recursion and Catalan number]
Label the vertices of Pn+2 by 1, . . . , n+ 2 in cyclic order.

Consider a triangulation and “cut it” using its triangle supported by the edge 1–(n + 2): show that the number tn = |Tn|
of triangulations of a (n + 2)-gon satisfies t0 = 1 and tn =

∑n
k=1 tk−1 tn−k. This recursive way of constructing triangulations

is called the Catalan recursion.
Consider again the triangle supported by the edge 1–(n + 2), and contract it: show that tn+1 =

∑
T∈Tn

deg(T, 1) where
deg(T, 1) is the number of neighbors of 1 in the triangulation T (excluding 2 and n+ 2).

Using rotational symmetry and the formula above, show (n+ 2)tn+1 = 2(n+ 1)tn.
Conclude that tn = Cat(n) = 1

n+1

(
2n
n

)
. Show that Cat(n) ∼ 4n√

π n3/2 using Stirling’s formula.

⋆ Exercise 3.6.5 — [Catalan graph of flips]
Show that the graph of flips of triangulations is connected: from a triangulation, go to a corner one.

Definition 3.6.6 — [Catalan families]
A Catalan family is a combinatorial family, i.e. for each n a finite set Cn of objects, such that |Cn| = Cat(n) = 1

n+1

(
2n
n

)
.

Each element in a set Cn is called a Catalan object, and Cn is itself called a Catalan family of order n. Any Catalan family
is hence in bijection with triangulations.

All Catalan families are endowed with a Catalan recursion, that is to say a recursive way to construct the objects in
Cn which gives a proof the recursive formula |Cn| =

∑n
k=1 |Ck−1| |Cn−k|.

A bijection between two Catalan families is a Catalan bijection when it factors though this recursion.
Each Catalan family is endowed with its own notion of flip, obtained as the image of the flip of triangulations through

the Catalan bijection.

⋆ Exercise 3.6.7 — [Some Catalan families]
More than 200 Catalan families are presented in [Sta15], we discuss here some of them.

For each of the following Catalan families, draw the 2, 5 and 14 Catalan objects for n = 1, 2, 3.

• Binary (search) trees: trees on n nodes, where each node have either 0, 1 or 2 children, its left and right children. Nodes
are labeled such that for every node, all its left descendants are smaller than itself, and all its right descendants are bigger.
Equivalently, trees where each of the n internal nodes have 2 children (and leaves have none).

• Parenthesizations: ways to compute a (non-commutative) multiplication of (n+ 1) factors.

• Dyck paths, sub-staircase partition: paths from (0, 0) to (2n, n) which only uses steps (1,+1) and (1,−1) ; area under a
broken line from (0, 0) to (n, n) using North steps (0, 1) and East steps (1, 0) which is never above the diagonal (0, 0)–(n, n).

• Dyck words, signed sequences with positive cumulants: words of length 2n on the alphabet {+,−} (or sometimes {X,Y })
such that, for all k, among the k first letters, the number of + is always greater than the number of −.

• Non-crossing partitions, nested pairings: functions A : [n− 1] → [n] with A(i) > i and if i < j < A(i) then A(j) < A(i) ;
partitions of 1, . . . , 2n into couples such that no two couples (i, j), (a, b) satisfy i < a < j < b.

• Permutations avoiding 312: permutations on n elements such that no three consecutive numbers i j k with j ≤ i ≤ k.

• 2 × n standard Young tableaux : ways of writing the number 1, . . . , 2n on two lines such that both lines are increasing,
and all n columns are increasing.
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Pick your favorite Catalan families, and look at the bijection between them.
Pick your favorite Catalan families, and understand the flip on it, i.e. the operation such that the flip graph on triangulation

is isomorphic to the flip graph of your Catalan family through the bijection you have unraveled before.
Comment on the existence of other natural notions of “flip” appearing in Catalan families but different from the usual flip.
Comment on how the “rotational symmetry” that you see in triangulations embodies (or not) in other Catalan families.

Definition 3.6.8 — [Tamari lattice]
The flip can be directed to obtain a directed graph of flips: this graph is actually the Hasse diagram of a lattice, called the
Tamari lattice. For a diagonal in a triangulation, look a the surrounding quadrilateral, says its corners are labeled with
i < j < k < ℓ, there are two possibilities: either the diagonal is i–j or it is j–ℓ. When flipping a triangulation, there is
exactly 1 quadrangle which switches from one possibility to the other. A flip is positive if the former diagonal is j–ℓ and
the new is i–k, and negative otherwise. The Tamari lattice is obtained by orienting the flip graph according to positivity.

⋆ Exercise 3.6.9
For the other Catalan families, describe the Tamari orientation of their flips.

Show that the Tamari lattice is a quotient of the weak order.

Definition 3.6.10
An n-associahedron, a.k.a. Stasheff n-polytope, is a polytope whose graph is the graph of flip of a Catalan families of order
n.

Definition 3.6.11 — [Loday’s associahedron]
Loday’s associahedron is defined has the Minkowski sum Asson :=

∑
1≤a<b≤n ∆[a,b] where ∆X = conv(ei ; i ∈ X).

Theorem 3.6.12 — [Loday, 2004]
Loday’s associahedron is an associahedron.

⋆ Exercise 3.6.13
Show that Loday’s associahedron is a deformed permutahedron, more precisely an hypergraphic polytope.

Show that Loday’s associahedron is Asson =

{
x ∈ Rn ;

∑n
i=1 xi =

(
n+1
2

)∑
i∈I xi ≥

(|I|+1
2

)
for all ∅ ⊊ I = [a, b] ⊊ [n]

}
.

Remark 3.6.14 Recall that the standard permutahedron is Πn =

{
x ∈ Rn ;

∑n
i=1 xi =

(
n+1
2

)∑
i∈I xi ≥

(|I|+1
2

)
for all I ⊊ [n]

}
. Conse-

quently, Loday’s associahedron can be obtained by “removing” some inequalities from the description of the permutahedron: a
polytope with such a property is called a removahedron.

⋆ Exercise 3.6.15
Show that Loday’s associahedron has Cat(n) vertices, each one of them naturally corresponding to a Catalan object (binary
trees are efficient to see that), and describe the normal cone at each vertex.

For a vertex v of Loday’s associahedron, endowed with its binary tree T , show that the i-th coordinate is equal to ℓ(i) · r(i)
where ℓ(i) is the number of left descendants of the node i in T , and r(i) its number of right descendants.

Show that the graph of Loday’s associahedron GAsson is isomorphic to the graph of flips of Catalan families.
Show that for c = (1, 2, . . . , n), the directed graph GAsson,c is (the Hasse diagram of) the Tamari lattice.

⋆ Exercise 3.6.16
From the previous exercise, deduce that Loday’s associahedron is a simple polytope.

Deduce that Loday’s associahedron is reconstructible from its graph, and that all associahedra are combinatorially equivalent.
This has an important consequence: there is a natural notion of faces on Catalan families! Describe this notion of faces

for triangulations (called subdivisions of a polygon), binary trees (called Schröder trees), parenthesizations (called partial
parenthesizations), non-crossing partitions, and permutations avoiding 312.

Prove that faces of the associahedron are products of associahedra.

⋆ Exercise 3.6.17
Prove that the graph of flips of Catalan families is n-connected.

Moreover, for any two Catalan objects C1, C2, let C1 ∩ C2 be the common part of the objects (e.g. diagonals appearing
in both triangulations C1 and C2, or sub-tree appearing in both binary trees C1 and C2, or parentheses appearing in both
parenthesizations C1 and C2,...): show that there exists a flip-path linking C1 and C2 in which every Catalan object contains
C1 ∩ C2. Thisisanon-leavingfaceproperty! Show there are at least n− |C1 ∩ C2| disjoint such paths (use Menger’s theorem).

(Semi-)open problem 3.6.18 — [Computing the distance between Catalan objects]
Design a polynomial-time algorithm which compute the distance (i.e. minimal number of flips necessary) between Catalan
objects, or show there is no polynomial-time algorithm for this problem.
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Remark 3.6.19 The diameter of the graph of flips of a Catalan family is known: 2n − 6 for n large enough (but we do not
know how “large” is sufficient).
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4.1. REHEARSAL

Section 4.1

Rehearsal

Definition 4.1.1 — [Deformation]
A deformation or (weak) Minkowski summand of P is a polytope Q such that there exists λ > 0 and another polytope R
satisfying: P = λQ+ R.

This is denoted Q ⊴ P.

Definition 4.1.2 — [Minkowski indecomposable, Minkowski decomposition]
A polytope is said Minkowski indecomposable if all its deformations are dilates of itself.

A Minkowski decomposition of a polytope P is a writing of P as a Minkowski sum of indecomposable polytopes. Two
decompositions are the same if they use the same summands of P.

⋆ Exercise 4.1.3 — [Rehearsal]
Prove that if Pc = Qc + Rc, and hence if dimPc = k, then for any deformation Q of P, the face dimQc ≤ k.

Deduce that, if Q ⊴ P, then for every edge e of Q, there exists (at least) an edge e′ of P which is parallel to e. Show that
this association is not necessarily injective.

⋆ Exercise 4.1.4
Prove that Q is a deformation of P ⊂ Rd if and only if NQ coarsens NP.

Deduce that if Q ⊴ P, then Q has less vertices that P.
Prove that if Q,Q′ are deformations of P, and λ > 0, then λQ ⊴ P, and Q+Q′ ⊴ P. Deduce that all dilated translate of Q

are deformations of P.
Deduce that the set of deformations of P is a cone (i.e. a set stable by sums and positive multiplication by a scalar).
Show that the lineal of this cone, i.e. the biggest vector space contained in this cone, is at least of dimension d.

⋆ Exercise 4.1.5
Show that simplices are Minkowski indecomposable.

Show that the only polygons which are indecomposable are triangles.

Definition 4.1.6 — [Deformation cone, Lattice of deformations]
The deformation cone DC(P) of a polytope P is the set of all its deformations. The lattice of deformations of P is the poset
whose elements are classes of normally equivalent deformations of P, ordered by ⊴.

We will prove that the deformation cone is a (pointed) polyhedral cone, whose face lattice is the lattice of deformations.

Remark 4.1.7 To ease the notation, we will sometimes speak about the deformations, deformation cone, etc, of fans.

⋆ Exercise 4.1.8
Draw the deformation cone of a Minkowski indecomposable polytope.

Draw the deformation cone of the 2-dimensional permutahedron Π3.
How many different (minimal) Minkowski decomposition of Π3 exist?

Definition 4.1.9 — [Simplicial cones and fans]
A pointed cone is simplicial if it is a cone over a simplex. A fan is simplicial if all its cones are simplicial.

⋆ Exercise 4.1.10
If DC(P) is simplicial, then how many different Minkowski decompositions does P have?

Definition 4.1.11 — [Generalized permutahedra]
A generalized permutahedron, as known as deformed permutahedron, is a deformation of the standard permutahedron Πn.

⋆ Exercise 4.1.12
What are the generalized permutahedra on dimension ≤ 3?
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Section 4.2

Height vector

Definition 4.2.1 — [Height vector]
For a polytope P, let R be the collection of rays of its normal fan, i.e. the (outer) normal vectors of the facets of P. The
height vector h ∈ RR (sometimes called slack vector) of the polytope P is defined by its coordinates hr = maxx∈P ⟨x, r⟩.

⋆ Exercise 4.2.2
Show that the height vector of P+ Q is the (vector) sum of the height vector of P with the one of Q. What about λP?

Definition 4.2.3 — [PF,h, Ph]
For a fan F supported on ray set R, and h ∈ RR, we denote PF,h =

{
x ∈ Rd ; ∀r ∈ R, ⟨x, r⟩ ≤ hr

}
. We usually denote

Ph for PF,h when F is clear from the context.

⋆ Exercise 4.2.4
Show that the height vector gives the definition of P via inequalities, i.e. P = PNP,h for h the height vector of P. Show that
the inequalities in this description is irredundant.

⋆ Exercise 4.2.5
Suppose F is a complete simplicial fan. Let C1,C2 be two adjacent cones of F , whose supporting ray sets are R1 and R2. Show
that |R1| = |R2| = d− 1.

Let S = R1 ∩R2, show that |S| = d− 1. Let {r1} = R1 ∖ S and {r2} = S ∖R2.
Show that there exists α ∈ R(R1∪R2) with αr1

> 0 and αr2
> 0, and:∑

r∈S∪{r1,r2}
αrr = 0

Definition 4.2.6 — [Wall-crossing inequalities]
For a complete simplicial fan F supported on the ray set R, the wall-crossing inequality associated to two adjacent cones
C1,C2 is the inequality on the coordinates of h ∈ RR given by:∑

r∈S∪{r1,r2}
αrhr ≥ 0

where Ci is supported on ray set S ∪ {ri} for i ∈ {1, 2}.

Theorem 4.2.7 — [Height parametrization of DC(F) - simplicial version]
For a simplicial fan F on ray set R, its deformation cone DC(F) is the cone of Ph for h ∈ RR satisfying all wall-crossing
inequalities of F .

⋆ Exercise 4.2.8
Convince yourself that this is the correct formula in 2 dimensions and in 3 dimensions. For the formal proof, go see the work
of Fomin–Chapoton–Zelevinsky, or work it out yourself.

Note that the main idea is asking yourself which formula governs the (regular) triangulation of the union of two adjacent
simplicial cones.

Theorem 4.2.9 For any fan F , there exists a simplicial fan G who refines F (using the same set of rays).

⋆ Exercise 4.2.10
Wait for Chapter 5 to learn that any polytope can be triangulated. Deduce this theorem.

Theorem 4.2.11 — [Height parametrization of DC(P)]
Let P ⊂ Rd be a polytope (not necessarily simple), and G a simplicial fan refining NP, supported on ray set R. Then its
deformation cone DC(P) is the cone of Ph for h ∈ RR satisfying both of the following:

• the wall-crossing equalities
∑

r∈S∪{r1,r2} αrhr = 0 for adjacent cones C1,C2 of G belonging to the same cone of F ;

• the wall-crossing inequalities
∑

r∈S∪{r1,r2} αrhr ≥ 0 for adjacent cones C1,C2 of G belonging to different cone of F .

Corollary 4.2.12 The deformation cone is a polyhedral cone, and the set of deformations is a lattice for the order ⊴.

⋆ Exercise 4.2.13
Prove Theorem 4.2.11 and Corollary 4.2.12.
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Theorem 4.2.14 — [Faces of DC(P)]
For a polytope P, the set of polytopes which are normally equivalent to P is in bijection with the interior of DC(P).

If Q ⊴ P, then DC(Q) is a face of DC(P): this face is precisely the face of DC(P) in the interior of which Q lies.

Remark 4.2.15 This theorem allows to “easily” compute faces of DC(P): suppose there exists Q ⊴ P which is a simple polytope
(either “simple” in the mathematical sense, or in the usual English sense), then DC(Q) is usually easier to compute than DC(P)
itself, and is a face of it.

⋆ Exercise 4.2.16
Using Theorem 4.2.11 and the coarsening of normal fans, prove this theorem.

Theorem 4.2.17 — [Dimension of deformation cones]
For a polytope P with fd−1 facets, one has dimDC(P) ≤ fd−1. The equality is achieved exactly for simple polytopes.

⋆ Exercise 4.2.18
Prove this theorem.

⋆ Exercise 4.2.19
Design an algorithm to test whether a fan is polytopal or not. Discuss the complexity of this algorithm.

Remark 4.2.20 For a fan F , checking if F is polytopal can be solved in polynomial time in the number of maximal cones
of F and the dimension it lives in. However, computing the dimension of DC(F) remains hard in practice. Moreover, most
“interesting” fans have an exponential (or more) number of maximal cones.

⋆ Exercise 4.2.21
Show that the normal vectors of a generalized permutahedron P ⊂ Rn are −eA for some A ⊆ [n], i.e. there exists h ∈
R2[n]∖{∅,[n]} with P = {x ∈ Rn ;

∑
i∈A xi ≥ hA}. Deduce that the cube and the associahedron are generalized permutahedra.

Definition 4.2.22 — [Submodular functions, Submodular cone]
A set function f : 2[n] → R is said to be submodular if it satisfies:

∀A,B ⊆ [n], f(A) + f(B) ≥ f(A ∩B) + f(A ∪B)

The submodular cone SCn is the set of submodular functions on [n].

⋆ Exercise 4.2.23
Show that f is submodular iff it respects the sub-additive formula, iff it respects the diminishing returns property:

sub-additive formula: ∀X ⊂ [n], ∀x, x′ ∈ [n]∖X, f(X ∪ {x}) + f(X ∪ {x′}) ≥ f(X) + f(X ∪ {x, x′})
diminishing return property: ∀X ⊆ Y ⊆ [n], ∀x ∈ [n]∖ Y, f(X ∪ {x})− f(X) ≥ f(Y ∪ {x}) + f(Y )

⋆ Exercise 4.2.24
Show that submodular functions form is a cone (using the operations λf : X 7→ λf(X) and f + g : X 7→ f(X) + g(X)).

Show that the cone of generalized permutahedra is (linearly isomorphic to) the submodular cone, i.e. DC(Πn) = SCn.

⋆ Exercise 4.2.25
Give a facet description of DC(Π3), and show (again) that it is a bi-pyramid over a triangle. Interpret every face as the
deformation cone of some generalized permutahedra.

⋆ Exercise 4.2.26
What is dimSCn? Its number of facets? Is it simplicial? Give (stupid) lower and upper bounds on its number of rays.

Remark 4.2.27 Some faces of the submodular cone are known, but its number of rays is widely open since Edmonds’ article in
1970. We know that the number of rays tn satisfies is: log log tn ≥ n− 3

2
logn+ O(1) (yes, there are two logs). Recent results

from Loho, Padrol & I show: log log tn ≥ n, and the real asymptotic is probably far greater. Simplices, shard polytopes, and
more generally matroid polytopes for connected matroids are among the rays.

Besides, a facet description of some faces of SCn is known, namely the one associated to Loday’s associahedron, to graphical
zonotopes, to nestohedra, and some other sparse examples (and quotientopes are almost done...). Note that DC(Asson) is
simplicial, and DC(ZG) is simplicial for a graph G without triangle.

Rays of the known simplicial faces are known, and rays of DC(ZG) for a graph G without K4 are known.

⋆ Exercise 4.2.28
Show that the cone of (weighted) graphical zonotopes is non a deformation cone, but is the intersection of SCn by a vector
space of dimension

(
n
2

)
. What about the cone of (weighted) hypergraphic polytopes?

(Semi-)open problem 4.2.29 Compute explicitly SCn for n ≥ 5 (and in other types).
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Section 4.3

Edge-length vector

Definition 4.3.1 — [Edge-length vector]

For a polytope P, its edge-length vector is ℓ ∈ RE(P)
+ where ℓe is the length of the edge e ∈ E(P), i.e. ℓ[u,v] = ||u− v||.

Definition 4.3.2 — [Edge-deformation vector]
For a deformation Q of P ⊆ Rd, recall that for each vertex p = Pc of P, there exists a vertex q = Qc of Q which is naturally

associated to p. Hence, it make sense to define the edge-length deformation vector to be λ ∈ RE(P)
+ by its coordinate, for

p,p′ two adjacent vertices of P, let q, q′ be the corresponding vertices of Q, then:

λp,p′ =
||q′ − q||
||p′ − p||

Note that, in the literature, only the name “edge-length vector” exist: we give here two separate definitions to make the
picture clear for the reader, but we will now forget the name “edge-deformation vector” are use only “edge-length vector”
for both definitions.

⋆ Exercise 4.3.3
Make sure that you have understood the definition and that you are sure it is well defined.

⋆ Exercise 4.3.4
Show that the edge-length vector of P+Q is the (vector) sum of the edge-length vector of P with the one of Q. How about λP?

⋆ Exercise 4.3.5
Show that P is indecomposable if and only if the set of edge-length vectors of its deformations is the ray in direction (1, . . . , 1).

Definition 4.3.6 — [Pp,λ, Pλ]

For a polytope P, a fixed vertex p ∈ V (P) and λ ∈ RE(P)
+ , we define Pp,λ by:

Pp,λ = conv

 ∑
pipj∈(p⇝p′)

λpi,pj
(pj − pi) ; p′ ∈ V (P)


where (p⇝ p′) = (p = p0,p1, . . . ,pr = p′) is a path from p to p′ in the graph of P (which is connected).

When p is clear from the context or irrelevant, we simply write Pλ.

⋆ Exercise 4.3.7
Check that the definition of Pp,ℓ does not depend on the choice of the path (p⇝ p′).

⋆ Exercise 4.3.8
Show that changing the starting vertex p in Pp,ℓ amounts to translating the resulting polytope.

⋆ Exercise 4.3.9
Let P be a polygon, and p1, . . . ,pr an enumeration of its vertices in cyclic order. Show that

∑r
i=1 pi − pi+1 = 0 (with the

convention pr+1 = p1).
Show that the edge-length vector of any deformation Q of P satisfy

∑r
i=1 λpi,pi+1

(pi − pi+1) = 0 (with the convention
pr+1 = p1).

Definition 4.3.10 — [Polygonal-face equation]
For a polytope P and a 2-face F with edges in cyclic order e1 = p1p2, ..., er−1 = pr−1pr, er = prp1, the associated

polygonal-face equation is the equation on the coordinates of λ ∈ RE(P) given by:

r∑
i=1

λpi,pi+1
(pi − pi+1) = 0

(with the convention pr+1 = p1)

Theorem 4.3.11 — [Edge-length parametrization of DC(P)]
Let P ⊂ Rd be a polytope, then its deformation cone DC(P) is the cone of (all the translate of) Pλ for λ ∈ RE(P) satisfying
all the polygonal-face equations of P, and λpp′ ≥ 0 for all edge pp′ of P.
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⋆ Exercise 4.3.12
Prove this theorem.

⋆ Exercise 4.3.13
Comment the differences (assets and drawbacks) between the height parametrization, the edge-length parametrization and the
polytope definition of the deformation cone: write clearly the 3 linearly isomorphic versions of this cone.

Remark 4.3.14 There are (at least) two other versions of this cone: one using (ample) divisors of the toric variety of P, and
the other one as DC(P) ≃

⋂
S co-facet of A conv{b ; b ∈ S} where A is the vertex set of P◦ and Gale(A) = {b1, . . . , br} is the

Gale transform of A.

Theorem 4.3.15 — [Dimension of deformation cones]
For a polytope P with f1 edges, one has dimDC(P) ≤ f1.

⋆ Exercise 4.3.16
Prove this theorem. Comment in regards of Theorem 4.2.17

⋆ Exercise 4.3.17
Design and algorithm to decide if a fan is polytopal or not.

⋆ Exercise 4.3.18 — [Characterization of generalized permutahedra]
Show that P ⊂ Rn is a generalized permutahedron if and only if its edges are in direction ei − ej for some i, j ∈ [n].

Show that this property is indeed satisfied by the permutahedron, by graphical zonotopes, by Loday’s associahedron, ...

Remark 4.3.19 This is the shortest way to define generalized permutahedra, so you will probably encounter it in talks.

⋆ Exercise 4.3.20
For the last time, compute DC(Π3), using the edge-length parametrization.

⋆ Exercise 4.3.21 — [Deformation cone of parallelotopes]
Write down the polygonal face equation of a parallelogram.

Let P ⊂ Rd be a parallelotope (i.e. a zonotope generated by d linearly independent vectors), and Q a deformation of P.
Show that knowing the length of d edges of Q, one can deduce the length of all its edges.

Deduce that DC(P) is a simplicial cone of dimension d.
Deduce that there is a unique way to write a parallelotope as a sum of indecomposable polytopes (and this is via its definition

as a zonotope).

Remark 4.3.22 This idea goes actually far beyond this exercise: on the one side, the deformation cone of any polytope which
is combinatorially equivalent to a product of simplices, is a simplicial cone [CDG+22] ; on the other side, the deformation cone
of any zonotope whose 2-faces are parallelograms, is simplicial [Padrol & I, 25+].

(Semi-)open problem 4.3.23 — [Simplicial deformation cone for a polytope with large polygonal faces]
For each dimension d, construct a d-polytope P whose deformation cone DC(P) is simplicial, but whose all 2-faces are
neither triangles nor quadrangles. For all k ≥ 5, is it possible to have DC(P) simplicial for P whose 2-faces are polygons
with more than k vertices?
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Section 4.4

Minkowski indecomposability

⋆ Exercise 4.4.1
Show that any polytope can be written as a Minkowski sum of Minkowski indecomposable polytopes. How many ways are
there to do so?

♢ Construction 4.4.2 — [Indecomposability game]
To know if a polytope P is indecomposable or not, one should play the following indecomposability game. Fix a vertex p of
P (in the sense that you assume to know exactly its coordinates), and the length of one edge of P. You are allowed to take
whatever vertex and edge length that are the most suitable for you. From this knowledge, try to deduce the coordinates of
other vertices (and the length of other edges) of P.

If you manage to deduce the coordinate of all the vertices, or equivalently the length of all the edges, then your polytope
is indecomposable. If not, you at least will grasp an upper bound on the dimension of DC(P) (be careful, this upper bound is
not as straightforward as it may seem).

Theorem 4.4.3 — [Indecomposability of simplicial polytopes]
All simplicial polytopes are Minkowski indecomposable.

⋆ Exercise 4.4.4
Show that simplices are indecomposable, using the polygonal face equation of triangles, and the indecomposability game.

Deduce that all simplicial polytopes are indecomposable, using the indecomposability game. Deduce that the convex hull
of randomly chosen points is almost surely indecomposable.

Comment this theorem in regard of the case of simple polytopes, cf Theorem 4.2.17.
Moreover, show that if all the 2-faces of P are triangles, then P is indecomposable.

⋆ Exercise 4.4.5
Write the polygonal face equation of a parallelogram.

Consider the standard cube, remove one vertex (i.e. consider the convex hull of all but one vertex of the cube), to obtain
the Strawberry.

Prove that the Strawberry is indecomposable.
Consider the graphical zonotope of the 4-cycle. Remove one vertex of degree 4 to obtain the Persimmon ; remove the two

antipodal degree-4 vertices to obtain the cuboctahedron.
Show that the Persimmon is indecomposable, whereas the cuboctahedron is not (how to write is as a Minkowski sum?).

Theorem 4.4.6 If P has a non-empty indecomposable face which share a vertex with every facets, then P is indecomposable.

⋆ Exercise 4.4.7
Let’s play the indecomposability game.

Let F be the indecomposable face at stake. Start with p ∈ V (F), and (if dimF ≥ 1) with the length of one edge of F.
Deduce the coordinate of all the vertices of F (even if dimF = 0).
Deduce the height function of all the facets of P.
Deduce that P is indecomposable.

Corollary 4.4.8 — [Shepard, 1963]
If there exists a family of indecomposable faces F = (F1, . . . ,Fk) such that every facet share a vertex with one of the Fi,
and such that the following graph GF is connected, then P is indecomposable. The nodes of GF are the Fi, and Fi is linked
with Fj by an arc in GF if dim(Fi ∩ Fj) ≥ 1.

⋆ Exercise 4.4.9
Deduce this Corollary from Theorem 4.4.6.

Definition 4.4.10 — [Shard polytopes]
For A ⊂ [n] with 1 ∈ A and n /∈ A, an A-alternating matching is an increasing sequence sequence M =

(
a1 < b1 <

a2 < b2 < . . . , ar < br
)
with ai ∈ A, bj ∈ [n] ∖ A. The shard polytope SP(A) associated to A is the convex hull of

eM =
∑

a∈M∩A ea −
∑

b∈M∖A eb for M an A-alternating matching.

⋆ Exercise 4.4.11
Prove that, up to translation, a shard polytope is a 0/1-polytope.

Prove that a shard polytope is a generalized permutahedron.
An A-fall is j ∈ A such that j + 1 /∈ A. An A-rise is j /∈ A or j = 1 such that j + 1 ∈ A or j + 1 = n.
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Show that the following is the facet description of the shard polytope SP(A):

SP(A) =

x ∈ Rn ;

∑n
i=1 xi = 0

xa ≥ 0 for a ∈ A
xb ≤ 0 for b /∈ A∑

i≤f xi ≤ 1 for f an A-fall∑
i≤r xi ≥ 0 for r an A-rise


Prove that there is an edge between e∅ and e(1,n), and that this edge shares a vertex with every facet of SP(A).
Deduce that SP(A) is indecomposable.
Deduce that the cone SCn has at least 2n − n− 1 rays. Comment that this lower bound was obvious...

Remark 4.4.12 What is not obvious is the following: shard polytopes form a basis of the ambient vector space in which SCn

lies. The same is true for the family
(
∆X ; ∅ ̸= X ⊂ [n], |X| ≥ 2

)
.

Remark 4.4.13 Shard polytopes are fundamental object in the study of the lattice properties of the weak order (and its
siblings): for any quotient of the weak order, its Hasse diagram is the graph of a generalized permutahedron, which can be
realized as the sum of well-chosen shard polytopes. Besides, similar constructions can be used to give a polytopal realization to
plenty of lattices (for other types, for polytopal complexes, ...). We could have made an exercise on quotientopes, but it would
be too long to be included here (perhaps another time).

(Semi-)open problem 4.4.14 — [Smilansky, 1986]
For dimension 3, both of the following are impossible, but what about other dimensions:

Is it possible to create an indecomposable polytope which has no triangles?
It is possible to create an indecomposable polytope whose facets are cubes?
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APPENDICE 4.E

Some data on the submodular cones

With the help of a computer, one can construct SC4 and partially SC5, we include here some information, just to give a sense
of how big the problem is. Note that this section is meant to be out-dated: it has been written in late 2024, and already some
better results can be included (coming from generalized polymatroids for instance).

f-vectors The cone SC4 has 80 facets indimension 11. After (a lot of) computation, one can obtain that SC4 has 22 107
faces, each one of them corresponding to a different (class of normally equivalent) generalized permutahedron. However, some of
these generalized permutahedra are equivalent up to central symmetry or permutations of coordinates: once this identification
done, it “only” remains 703 different generalized permutahedra which are deformations of the 3-dimensional Π4.

The reduced f -vectors of SCn are (n = 5 was computed with Winfried Bruns):
SC3: (2, 2, 1, 1)
SC4: (7, 25, 64, 127, 174, 155, 97, 39, 12, 2, 1)
SC5: 672
24 026
373 433
3 355 348
19 739 627
81 728 494
249 483 675
579 755 845
1 048 953 035
1 501 555 944
1 719 688 853
1 587 510 812
1 186 372 740
719 012 097
353 190 577
140 265 886
44 831 594
11 464 559
2 326 596
372 031
46 330
4 572
355
30
2

1

Rays You already know the 2 rays (up to reduction) of SC3 correspond to a segment and a triangle.
Show that the 7 rays of SC4 correspond to: a segment, a triangle, a tetrahedron, an octahedron, a pyramid over a square,

the Strawberry (convex hull of all but one vertices of a cube), the Persimmon (convex hull of all but a degree-4 vertex of the
graphical zonotope of the 4-cycle).

All matroid polytopes for a connected matroid correspond to rays of SCn, but numerical experiments seem to show that,
asymptotically, this type of rays amounts for a negligible part of the total of the rays. Loho, Padrol I [25+] have proven
this statement by constructing more than c2

n

for some c > 2. Note that matroid polytopes correspond to 0/1 generalized
permutahedra.

Conjecture 4.E.1 — [Combinatorially equivalent indecomposable generalized permutahedra]
If P,Q are two indecomposable generalized permutahedra which are combinatorially equivalent, then Q can be obtained
from P by permuting coordinates and taking central symmetry (if necessary).

Note that this is false for decomposable generalized permutahedra.

Equilateral polytopes A polytope is equilateral if all its edges have the same length.
This is in particular interesting for indecomposable polytopes: if P is equilateral and indecomposable, then all its deforma-

tions are dilates of P, hence also equilateral.
Note that all the rays of SC4 correspond to equilateral polytopes! This is no longer true for SC5, but there seem to be a

surprisingly large number of them which are equilateral.

(Semi-)open problem 4.E.2 — [Equilateral indecomposable generalized permutahedra]
Characterize (or at least construct a lot of) equilateral indecomposable generalized permutahedra.
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Special faces of SCn, and simplicial faces Fixing a generalized permutahedron P and computing its deformation
cone is equivalent to computing a face of SCn. This has been done in the case of Loday’s associahedra, graphical zonotopes,
nestohedra, and is almost done for quotientopes.

Especially, in theses cases we know which graph (respectively building set and arc diagram) give rise to a simplicial face of
SCn, hence which of these generalized permutahedra have a unique way to be written as a Minkowski sum.

(Semi-)open problem 4.E.3 Find a large class of simplicial faces of SCn.

(Semi-)open problem 4.E.4 — [Deformation cone of hypergraphic polytopes]
For an hypergraphH, compute the deformation cone of its hypergraphic polytope DC(PH). Determine for which hypergraph
this cone is simplicial.

Cubal relations For S ⊆ [n] and x ∈ S, we denote Sx = S ∖ {x}.
The normal vector to the facets of SCn are n(S, u, v) = eSuv−eSu−eSv+eS , for every u, v ∈ S ⊆ [n], where (eX ; X ⊆ [n])

is the canonical basis of R2[n]

.
In order to understand which facets intersect, in hope determine the faces of SCn, the first step is to understand the linear

relations between the n(S, u, v). One can show (without too much difficulties) that these linear relations are generated by the
cubal relation:

n(Suvx, u, v) + n(Sux, u, x) = n(Suv, u, v) + n(Suvx, u, x)

In particular, using the cubal relations (without using their combinations) is enough to deal with DC(ZG) and DC(NB),
the deformation cones of graphical zonotopes and nestohedra. It is probably also enough to deal with deformation cones of
quotientopes, but dealing with deformation cones of hypergraphic polytopes require using combinations of cubal relations.

(Semi-)open problem 4.E.5 — [Deformation cones of generalized permutahedra via cubal relations]
Find a way to exploit cubal relations to compute the facets of DC(P) for any generalized permutahedron P.
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Section 5.1

Monotone paths, Coherent paths, Monotone path polytope

Definition 5.1.1 — [Linear program]
A linear program is the data of finitely many linear inequalities (the constraints), together with a linear functional to
optimize (the objective function). Such a linear program can be represented by a couple (P, c), where P ⊆ Rd is the set of
solution of the constrains, and the objective function is x 7→ ⟨x, c⟩ for c ∈ Rd.

In general, P can be an (unbounded) polyhedra or the empty set, but we limit ourself to the study of bounded linear
programs, that is to say when P is a polytope. We assume this case in all what follows, and let the reader extend the
definitions and theorem to unbounded cases.

Definition 5.1.2 — [Monotone paths]
For a linear program (P, c), a c-monotone path is a directed path in the directed graph GP,c from one of its sources to one
of its sinks. When c is clear from the context, we do not precise it.

Recall that, if c is generic (i.e. for all edge uv of P, one has ⟨u, c⟩ ≠ ⟨v, c⟩), then the source and sink is unique.

⋆ Exercise 5.1.3
How many monotone paths of length k are there for the linear program (∆d−1, c) for a generic c?

How many monotone paths of length k are there for the linear program (□d, c) for a generic c = (1, . . . , 1)?

Conjecture 5.1.4 — [Monotone paths on 3-polytopes]
A (simple) 3-polytope with 2n vertices has ≤ Fn+2+1 monotone paths, where Fn is the nth Fibonacci number (F1 = F2 = 1,
Fn+2 = Fn+1 + Fn)

1.

1Probably, by the time this course take place, Guyer & I will have solved this conjecture.

⋆ Exercise 5.1.5
When was Leonardo Fibonacci born? Around1170.

We will do a wedge on a polygon: Fix a polygon with n+ 1 vertices in the plane x3 = 0 with an edge in direction (1, 0, 0),
make a cylinder over it, in direction (0, 0, 1), and add the inequalities x3 ≥ 0 and x1 + x3 ≤ 0. The 3-polytope obtained is a
wedge over a (n+ 1)-gon. Show that it has 2n vertices.

Show that, for a well chosen starting polygon and by wiggling a bit the coordinates of the vertices of the wedge, one can
construct a 3-polytope with 2n vertices such that it has Fn+2 + 1 monotone paths in a well-chosen direction.

Remark 5.1.6 What follows on monotone path polytope is mostly copy-pasted from one of my papers [Pou24].

Definition 5.1.7 — [Coherent path]
For a linear program (P, c) and a secondary direction ω ∈ Rd (linearly independent to c), one can consider the polygon
Pc,ω obtained by projecting P onto the plane spanned by (c,ω):

Pc,ω :=
{(

⟨x, c⟩ , ⟨x,ω⟩
)
; x ∈ P

}
A proper face (vertex or edge) G of Pc,ω is an upper face if it has an outer normal vector with positive second coordinate1,

equivalently if (x1, x2) + (0, ε) /∈ Pc,ω for all (x1, x2) ∈ G, and ε > 0.
A monotone path L is coherent if there exists ω ∈ Rd such that L is the family of pre-images by πc of the lower faces

of Pc,ω. In this case, such an ω is said to capture the coherent path L.
1Some definitions in the literature use lower faces, we take upper faces to ease drawings and notations.

Definition 5.1.8 — [Monotone path polytope]
For a linear program (P, c), consider the projection πc : x 7→ ⟨x, c⟩. Denoting the image segment Q = πc(P) = {⟨x, c⟩ ; x ∈
P}, The monotone path polytope Mc(P) is defined by:

Mc(P) :=

{∫
Q

γ(x)dx ; γ section of πc

}
Remark 5.1.9 This definition is awful, and everyone should immediately forget about it. We first state a nice theorem
explaining why one would want to study the monotone path polytope, and then explain how to construct it.

Theorem 5.1.10 The vertices of Mc(P) are in bijection with coherent monotone paths on (P, c).
The non-coherent monotone paths correspond to (some) interior points of Mc(P).

♢ Construction 5.1.11
Let’s now look at the vertices of the monotone path polytopes Mc(P) and expose this construction more clearly. Figure 5.1
gives an illustration.
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Figure 5.1: Animated construction of the normal fan of the monotone path polytope of the 3-dimensional simplex. For each
ω ∈ R3 orthogonal to c, we project ∆3 onto the plane spanned by (c,ω) (Right), and record the corresponding coherent
monotone path (Left). (Animated figures obviously do not display on paper, please use a PDF viewer (like Adobe Acrobat
Reader), or go on my personal website, or ask by email.)

Fix a polytope P ⊂ Rd, and a generic direction c ∈ Rd.
Consider another direction ω ∈ Rd, linearly independent of c, and project P onto the plane spanned by (c,ω). In Figure 5.1,

we take a tetrahedron and a direction c, and then scan through all possible ω (it is enough to scan only ω with ⟨ω, c⟩ = 0).
The tetrahedron is naturally projected onto the plane (c,ω) by looking at the boundary of the drawing (i.e. the 3 or 4 outside
edges). This polygon has two paths from its minimal (leftmost) vertex to its maximal (rightmost) vertex: a lower one and
a upper one. When there exists ω such that a given monotone path L is projected onto the upper path (and no 2-face of P
projects onto it), then L is coherent.

The vertices of the monotone path polytope Mc(P) are not in bijection to all the monotone paths on P, but only to the
coherent ones. The faces of higher dimension are obtained following the same ideas. In Figure 5.1, we record on the left
the (coherent) monotone path obtained for each choice of ω on the chosen tetrahedron, in this case, all monotone paths are
coherent.

We now present four ways to visualize the monotone path polytope: the two firsts focus on its normal fan, while the two
lasts allow for an explicit computation of the vertices.

Exploring the space of ω, and projection of the normal fan of P First of all, focus on the space of all ω,
and partition it depending on the coherent coherent paths they yield. Precisely, to a coherent path L we associate N (L) =
{ω ; ω captures L}. Then N (L) is a polyhedral cone by linearity (in ω) of the projection from P onto Pc,ω, and the cones
N =

(
N (L)

)
L are the maximal cones of a fan. This fan is exactly the normal fan of Mc(P). Hence, one can run through all

possible ω ∈ Rd, orthogonal to c (as all ω + λc capture the same coherent path for any λ ∈ R), to draw the normal fan of
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Figure 5.2: (Top) For reference, the tetrahedron P = ∆3, and the direction c from Figure 5.1. (Left) The stereographic
projection of the normal fan of P, each colored region correspond to (the normal cone of) a vertex of P. (Right) Two rays give
rise to the same coherent monotone path if and only they intersect the same colored regions, we draw the resulting fan, labeled
accordingly.

Mc(P), see Figure 5.1 for the construction. A given ω captures the coherent path (v0, . . . ,vr) such that v0 = vmin, vr = vmax

and vivi+1 is the edge of P with ⟨vi, c⟩ < ⟨vi+1, c⟩ satisfying that ⟨vi+1−vi,ω⟩
⟨vi+1−vi,c⟩ is the unique maximizer of

⟨vj−vi,ω⟩
⟨vj−vi,c⟩ for vivj

and edge of P with ⟨vi, c⟩ < ⟨vj , c⟩.
This construction shows an important property: for a fixed ω, all ω + λc for λ ∈ R capture the same coherent path.

Consequently, one can obtain the normal fan of Mc(P) by projecting the normal fan of P: to each normal cone C ∈ NP,

associate its projection along c, namely C⊥ := {x − ⟨x,c⟩
⟨c,c⟩ c;x ∈ C}. The common refinement of

(
C⊥;C ∈ NP

)
is the normal

fan1 of Mc(P).

Line bundle and stereographic projection A second way to visualize the combinatorics of the monotone path polytope
Mc(P) is to imagine the lines ℓω := (ω + λc ; λ ∈ R), and consider the line bundle (ℓω ; ω ∈ Rd). Each line ℓω intersects
the normal fan NP of the polytope P, and the cones it intersects describe the coherent path that ω captures: if ℓω intersects
only maximal cones and cones of co-dimension 1, then it captures a coherent monotone path (which is the case for almost all
ω). Looking at which maximal cones of NP are intersected by ℓω yields the list of vertices forming the associated coherent
monotone path; whereas looking at which co-dimension 1 cones are intersected by ℓω yields the list of edges forming the
associated coherent monotone path.

To visualize this easily (especially if dimP = 3), one can use the stereographic projection stc : Rd → Rd−1 that maps the
apex c

||c|| to infinity, see Figure 5.2. The normal fan NP projects onto a subdivision stc(NP) of Rd−1 by spherical cap (i.e. arcs

of circles if dimP = 3). Besides, the counterpart on the sphere of ℓω, is the arc αω =
(

ω+λc
||ω+λc|| ; λ ∈ R

)
. This is an arc of a great

circle containing the apex c
||c|| and its antipodal point: thus stc(αω) is ray (from 0 ∈ Rd−1 to infinity). The cells of stc(NP)

that the ray stc(αω) intersects are the cones of NP that ℓω intersects, and hence describe the coherent path that ω captures:
by looking how all rays of Rd−1 intersect stc(NP), we get a drawing of the normal fan of Mc(P) in Rd−1, see Figure 5.2 (Right).

This point of view can come in handy when one wants to vary c. Indeed, varying c amounts to varying the apex of the
stereographic projection, i.e. to “roll” the projection stc(NP) inside Rd−1. This “rolling” is hard to describe, but at least, the
rays we want to intersect it with remain fixed.

Convex hull of (explicit) points A third way to construct the monotone path polytope Mc(P) is to use the following
formula from [BS92, Theorem 5.3]. Let V (P) = {v1, . . . ,vn} with ⟨vi, c⟩ ≤ ⟨vj , c⟩ for i ≤ j. For a monotone path L =
(vi1 , . . . ,vir ) on P (with i1 = 1 and ir = n), denote

ψ(L) =
r∑

j=1

〈
vij − vij−1

, c
〉

2 ⟨vn − v1, c⟩
(vij + vij−1

)

Then Mc(P) = conv
(
ψ(L) ; for L monotone path on P

)
. A point ψ(L) is a vertex of Mc(P) if and only if L is a coherent

monotone path.
For the case of the simplex, all monotone paths are coherent, so a figure would not be very enlightening. We picture a

better example in Figure 5.3: (Left) is drawn a 3-dimensional polytope, (Right) its monotone path polytope, obtained via the
above formula. The two red crosses correspond to non-coherent monotone paths L, for which the point ψ(L) lie inside Mc(P).

1This construction embeds the fan NMc(P) directly into the hyperplane c⊥, instead of embedding it in Rdim(P).
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Figure 5.3: (Left) The (4, 2)-hypersimplex lives in the hyperplane {x ;
∑4

i=1 xi = 2} inside R4. (Middle) Its monotone path
polytope is an octagon, each vertex of which is labeled by the corresponding (coherent) monotone path, drawn on ∆(4, 2).
(Right) Actually, this monotone path is not a regular octagon, but the octagon depicted here, the two crosses correspond to
the two monotone paths on ∆(4, 2) which are not coherent.
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Figure 5.4: The construction of Mc(P) as a sum of sections for the tetrahedron P = ∆3. Each section is orthogonal to c and
contains a vertex (except for vmin and vmax).

Minkowski sum of sections A forth way to visualize monotone path polytopes is to use [BS92, Theorem 1.5] which
provides a re-writing of the integral as a finite Minkowski sum. This sum is constructed as follows. We begin by sorting the
vertices of P according to their scalar product against c: V (P) = {v1, . . . ,vn} with ⟨vi, c⟩ ≤ ⟨vi+1, c⟩. The segment Q = πc(P)
is cut out by the projection into sub-segments Ci := [qi, qi+1] with qi = ⟨vi, c⟩, and the barycenter (i.e. middle) of Ci is trivially
bi =

qi+qi+1

2 . The monotone path polytope Mc(P) is normally equivalent to the Minkowski sum of sections
∑n

i=1 π
−1
c (bi).

Though exact, this construction is a bit unhandy. Yet, as we will prove in ??, one can forget about centers, as Mc(P) is

normally equivalent to
∑n−1

i=2 π
−1
c (qi). This gives beautiful pictures, see Figure 5.4 for the case of the tetrahedron.

Note that, between the figures, a slight change of perspective happened. The fans constructed in Figure 5.1 (Left) and
Figure 5.2 (Right) are the same, and are the normal fan of the Mc(P) appearing in Figure 5.4 (Right), even thought a right
angle seems to appear on the latter but not on the firsts.

Theorem 5.1.12 For a linear program (P, c) with c generic, let V (P) = {v1, . . . ,vn}, and qi = ⟨vi, c⟩ with q1 ≤ · · · ≤ qn.

The monotone path polytope Mc(P) is normally equivalent to the Minkowski sum of sections
∑n−1

i=2 {x ∈ P ; ⟨x, c⟩ = qi}.

⋆ Exercise 5.1.13
Let Pi = {x ∈ P ; ⟨x, c⟩ = qi}, and Pi,i+1 = {x ∈ P ; qi ≤ ⟨x, c⟩ ≤ qi+1}. Show Pi,i+1 is the Cayley polytope Cay(Pi,Pi+1).

Deduce that the section {x ∈ P ; ⟨x, c⟩ = qi+qi+1

2 } can be written as a Minkowski sum of Pi and Pi+1.
Conclude that Mc(P) =

∑
i Pi, and explain why we can remove P1 and Pn from this sum.

⋆ Exercise 5.1.14 — [Billera–Strumfels, 1992]
Prove that the monotone path polytope of a simplex (for a generic direction) is a cube, and hence that all the monotone paths
on a simplex are coherent. Prove that the monotone path polytope of a cube for c = (1, . . . , 1) is a permutahedron, and hence
that all the monotone paths on a cube are coherent.

(Semi-)open problem 5.1.15 — [Monotone path polytope of the permutahedron]
Compute (the number of vertices of) the monotone path polytope of the permutahedron for c = (1, 2, . . . , n).
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Section 5.2

Triangulations, Secondary polytopes

Definition 5.2.1 — [Simplicial complex (abstract and not)]
A simplicial complex K = (S1, . . . ,Sk) is a collection of simplices in Rd such that:

• If S ∈ K, then all the faces of S are in K.

• If S,S′ ∈ K, then S ∩ S′ is a face of both S and S′.
An abstract simplicial complex K is a collection of subsets of [n] such that if X ∈ K and Y ⊆ X, then Y ∈ K. Some

authors may consider ∅ /∈ K.
A simplicial complex K realizes an abstract simplicial complex K if K = (X ; conv{vi ; i ∈ X} ∈ K) where v1, . . . ,vn

are the vertices of K (i.e. the vertices of its simplices).

⋆ Exercise 5.2.2
Show that every abstract simplicial complex K on n vertices can be realized. Usethefacesofthestandardsimplexofdimensionn.

Definition 5.2.3 — [Dimension, Pure, Carrier, Vertex set of (abstract) simplicial complexes]
The dimension of a simplex X in an (abstract) simplicial complex K is dimX = |X|+ 1.

A (abstract) simplicial complex is pure if all its inclusion-maximal simplices have the same dimension.
The vertex set of a simplicial complex is the union of the sets of vertices of the simplices it contains.
The carrier (or underlying space) of a simplicial complex is the union of its simplices.

Remark 5.2.4 Simplicial complexes, abstract or not, are fundamental objects in many fields of mathematics, from algebraic
topology to pure combinatorics, as well as computational geometry. We introduce it here so that the reader starts to get at
ease with the notion, but we will not get into the details.

Definition 5.2.5 — [Point configuration]
A point configuration is a finite collection of points A = (a1, . . . ,ar), where ai ∈ Rd.

Sometimes, the points could be allowed with repetitions (and A could be a multi-set), but not in this course.

Definition 5.2.6 — [Triangulation]
A triangulation of a point configurationA is a simplicial complex T whose carrier is convA, and whose vertex set is included
in A. Abstractly, a triangulation should be thought as the abstract simplicial complex: T := (X ; conv{ai ; i ∈ X} ∈ T ),
such that for every extremal vertex ai ∈ A, then i is a vertex of T .

A triangulation T is full if its vertex set is equal to A. Abstractly, a triangulation T is full if for point ai ∈ A, then i
is a vertex of T .

The word “triangulation of a polytope P ⊂ Rd” can either refer to a (full) triangulation of its vertices V (P), or to a full
triangulation of all its lattice points P ∩ Zd.

⋆ Exercise 5.2.7
There are 3 possible points configurations of 4 points: for each of them, compute all the triangulations. Which ones are full?

⋆ Exercise 5.2.8
How many triangulations of a n-gon are there? How many are full?

Definition 5.2.9 — [Unimodular simplices, Unimodular triangulation]
A simplex S = conv(v1, . . . ,vd+1) is unimodular if it is a lattice simplex (i.e. all its vertices have integer coordinates) and

its volume is 1
d! , that is to say if: det

((
1
v1

)
, . . . ,

(
1

vd+1

))
= 1.

A triangulation is unimodular if all its simplices are.

⋆ Exercise 5.2.10
Show that 1

d! is the minimal volume of a simplex of dimension d with integer coordinates.

⋆ Exercise 5.2.11
Show that if P has a unimodular triangulation T (using either its vertices or its lattice points), then its volP = |T |, where vol
is the lattice volume (i.e. vol∆d−1 = 1).

⋆ Exercise 5.2.12 — [Reeve simplex]

Consider Reeve’s simplex: Reeveq = conv

0
0
0

 ,

0
0
1

 ,

0
1
0

 ,

q1
1

 for an integer q > 0.

Compute the volume of Reeveq, and show it does not have a unimodular triangulation using its lattice points, for q > 1.
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Theorem 5.2.13 — [Knudsen, 1977, Haase–Paffenholz–Piechnik–Santos, 2014]
If P is a lattice d-polytopes (i.e. all its vertices have integer coordinates), then there exists an integer k ≥ 0 such that kP has

a unimodular triangulation. Moreover, k ≤ (d+ 1)!(volP)!(d+1)(d+1)2 vol P

, where vol is the lattice volume (i.e. vol∆d−1 = 1).

Remark 5.2.14 See the proof in [HPPS14].

Remark 5.2.15 Unimodular triangulations are of prime importance for computing volumes, but also for the study of Ehrhart
theory, and has deep link with algebraic combinatorics. We mention it here for the sake of completeness and to help the reader
understand the other courses she of he might attend, but we focus on regular triangulations.

Definition 5.2.16 — [Lower faces, Lower facets]
For a polytope P ⊂ Rd, a face F is a lower face if there exists c satisfying F = Pc and cd < 0.

Especially, F is a lower facet is the last coordinate of its (outer) normal is strictly negative.

Definition 5.2.17 — [Regular triangulation]
A triangulation T of a point configuration A is regular if there exists a height function given by a vector ω ∈ RA, such

that the lower faces of PA,ω := conv

((
ai

ωai

)
∈ Rd+1 ; ai ∈ A

)
are conv

((
ai

ωai

)
∈ Rd+1 ; i ∈ X

)
for X ∈ T .

We say that ω captures the triangulation T .

⋆ Exercise 5.2.18
Prove that any point configuration has (at least) one triangulation, moreover a regular one.

⋆ Exercise 5.2.19
Show that the two triangulations of a quadrangle are regular.

⋆ Exercise 5.2.20 — [A non-regular triangulation]
Suppose two adjacent vertices of a quadrangle are at height 0, write the inequality in the height of the two other vertices which
governs which triangulation is captured by this height function.

In the plane R2, consider a triangle a1, a2, a3 with barycenter 0, and its scaled version a4 = λa1, a5 = λa2, a6 = λa3

with λ > 1. Show that the triangulation T = (123, 124, 235, 136, 146, 245, 356) is not regular.

⋆ Exercise 5.2.21 — [Order triangulation of the cube]
For a permutation σ ∈ Sn, the k-th prefix is the set σ≤k = {σ(1), . . . , σ(k)}.

The order simplex ∆σ associated to a permutation σ is the simplex conv(eσ≤k
; 0 ≤ k ≤ n) where eX =

∑
i∈X ei. The

order triangulation (also Kuhn’s triangulation, also staircase triangulation) is the triangulation of the cube □n whose maximal
simplices are the order simplices (∆σ ; σ ∈ Sn).

Show that the order triangulation is a triangulation of □n, which is unimodular (hint: vol□n = n!), and regular (hint: take
ωX = −|X|2). Show that the simplices in the order triangulation come in two classes of rotation-equivalent simplices. Show
that these classes are equivalent by central symmetry.

The dual graph GT of a triangulation T is the graph whose node set is T and where two simplices X,X ′ ∈ T are linked by
an arc if |X ∩X ′| = |X| − 1.

Show that the order triangulation is induced by cutting the cube by the braid arrangement. Deduce that the dual graph of
this triangulation is the graph of the permutahedron.

⋆ Exercise 5.2.22 — [Haiman triangulation of the cube, 1991]
First, find a triangulation of the 3-cube into 5 tetrahedra.

Now, consider the product of simplices ∆d−1 ×∆n−1 ⊂ Rd+n. The vertices of ∆d−1 ×∆n−1 can be associated to the arcs
of the complete bipartite graph Kd,n on [d] ⊔ [n]. A simplex S in ∆d−1 ×∆n−1 is associated to a subgraph of Kd,n.

Show that such a simplex S is full dimensional if and only if the associated sub-graph is a tree.
Deduce that all full-dimensional simplices inside ∆d−1 ×∆n−1 are unimodular.
How many simplices are there in a triangulation of ∆d−1 ×∆n−1?
If a d-polytope P is triangulated into r simplices, and a n-polytope Q into s simplices, construct a triangulation of P × Q

into rs
(
n+d
d

)
simplices.

Deduce that if □n can be triangulated into tn simplices, then □kn can be triangulated into
(
tn
n!

)k
(kn)!.

Conclude that, asymptotically, □n can be triangulated using only ρn n! simplices, with ρ =
(
5
6

) 1
3 ≃ 0.941.

Show that one can require this triangulation to be regular.

Remark 5.2.23 Using “small” triangulations of □8 obtained by Sallee (1984), one can improve to ρ =
(
13 248
40 320

) 1
8 ≃ 0.870.

(Semi-)open problem 5.2.24 — [Small (regular) triangulations of the cube]
Find a (regular) triangulation of the cube □n using the minimum number of simplices, especially for n ≥ 8. Try to get
closer to the asymptotic lower bound: O(cn

√
n!) for some constant number c.
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Definition 5.2.25 — [Secondary fan]
The secondary fan of a point configuration A is the fan in RA where ω and ω′ belong to the same cone if they capture the
same (regular) triangulation.

For a (regular) triangulation, we denote Nsec(T ) = {ω ∈ RA ; ω captures T on A}. By convention Nsec(T ) = ∅ for
non-regular triangulations of A. Hence Nsec =

(
Nsec(T ) ; T triangulation of A

)
.

⋆ Exercise 5.2.26
Show that the secondary fan is a complete pointed fan. It is essential?

Definition 5.2.27 — [Gel’fand–Kapranov–Zelevinsky vector]
The Gel’fand–Kapranov–Zelevinsky vector Ψ(T ) ∈ RA of a triangulation T of a point configuration A is given by its
coordinate on the point ai ∈ A:

Ψ(T )ai
=

∑
i∈X∈T

vol
(
conv(aj ; j ∈ X)

)
⋆ Exercise 5.2.28
To see if you are at ease with the notations, show that: Ψ(T ) =

∑
S∈T (vol S) eV (S).

Definition 5.2.29 — [Secondary polytope]
The secondary polytope Σ(A) of a point configuration A is the convex hull of the Gel’fand–Kapranov–Zelevinsky vectors
of its triangulations: Σ(A) = conv(Ψ(T ) ; T triangulation of A).

Theorem 5.2.30 — [Gel’fand–Kapranov–Zelevinsky, 1991]
The normal fan of the secondary polytope Σ(A) is the secondary fan.

Especially, the vertices of the secondary polytope correspond to regular triangulations, while the Gel’fand–Kapranov–
Zelevinsky vector of non-regular triangulations lies in the interior of the secondary polytope Σ(A).

Moreover, NΣ(A)(Ψ(T )) = Nsec(T ).

⋆ Exercise 5.2.31
Prove this theorem.

(Semi-)open problem 5.2.32 — [Secondary polytope of the cube]
Compute the secondary polytope of the cube □n for n ≥ 4.

Note that, Σ(□3) is fully known: it has dimension 5 and 74 vertices. However, Σ(□4) has dimension 12 and 87 959 448
vertices, but is not fully known. For n ≥ 5, the number of vertices is not known, and dimΣ(□n) = 2n − n.

(Semi-)open problem 5.2.33 — [Triangulations of random polytopes]
Study triangulations and secondary polytope of random polytopes.

For instance, construct the convex hull of n points taken at random on a 4-sphere, and look a the number of regular
triangulations vs the number of triangulations. Does this ratio goes to 0 when n→ +∞?

⋆ Exercise 5.2.34 — [The secondart polytope of polygon is an associahedron]
Consider the cyclic n-gon: Cyc(2, n) = conv

(
(i, i2) ; 1 ≤ i ≤ n

)
(it works for any n-gon, but it is easier with the cyclic one).

Fix a height function ω ∈ Rn with associated triangulation T . Let ijkℓ be a quandrangle of T , i.e. the union of two

adjacent triangles. Show that the triangulation of the quadrangle ijkℓ depends on the sign of: det


1 1 1 1
i j k ℓ
i2 j2 k2 ℓ2

ωi ωj ωk ωℓ

.

For ωx =
∑n

q=0 αqx
q for some αq ∈ R, show that this determinant is a polynomial of degree n in the variables i, j, k and ℓ.

Using Lagrange interpolation, deduce that, by choosing the αq wisely, one can prescribe the sign of these determinants.
Deduce that all triangulations of the cyclic n-gon are regular.
Deduce that the graph of the secondary polytope Σ(Cyc(2, n)) is the one of an associahedron, and thus that Σ(Cyc(2, n)) is

an associahedron.
Denoting vi = (i, i2), show that vol(vivjvk) =

1
2 (j − i)(k − i)(k − j).

Deduce that the vertex of the secondary polytope Σ(Cyc(2, n)) associated to the triangulation T is:

Ψ(T ) =
1

2

∑
ijk∈T

(j − i)(k − i)(k − j) (ei + ej + ek)

Deduce that Σ(Cyc(2, n)) is not normally equivalent to Loday’s associahedron.

Remark 5.2.35 Triangulations is a vaaaaaaast subject, and there are are many subjects that we could have talked about. A
non-exhaustive list a key words that the interested reader might look for is: Delaunay triangulations, simplices with integer
decomposition property, Ehrhart theory, triangulations of order polytopes, hyperplan induced triangulation, flag triangulation,
Cayley trick, Gröbner bases, ...

We recommend the excellent book of [LRS10], adorned by 550 figures!
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Section 5.3

Fiber polytopes

The following is mainly an extract of my thesis, re-adapted for the purpose of this course.
We give a very brief introduction to fiber polytopes, secondary polytopes and π-coherent subdivisions arising from a polytope

projection π : P → Q. For an instructive and illustrated presentation of the subject, we advise the reader to look at [Zie95,
Chapter 9], a more in depth explanation can be found in [ALRS00, Section 2] and [LRS10, Chapter 9.1], and the original
articles [BS92] (for fiber polytopes) and [GKZ90, GKZ91] (for secondary polytopes) give the details of the proofs.

Definition 5.3.1 — [Polytope projection]
A polytope projection is a couple (P, π) where P ⊂ Rd is a polytope and π : Rd → Rd′

is a projection. When dimensions
are obvious or irrelevant, we usually denote such a projection by π : P → Q assuming that Q := π(P).

Definition 5.3.2 — [Polyhedral complex, Polyhedral subdivision]
A polyhedral complex C is a collection of polytopes such that if P ∈ C, then all the faces of P are in C, and if P,Q ∈ C,
then the intersection P ∩ Q is a face of both P and Q.

A subdivision of a polytope Q is a polyhedral complex C such that
⋃

P∈C P = Q.

Definition 5.3.3 — [Induced subdivision, Baues poset]
For a polytope projection π : P → Q, a π-induced subdivision of Q is a subdivision π(F) of Q where:

• π(F) = {π(F ) ; F ∈ F} for F a family of faces of P.

• for F, F ′ ∈ F , if π(F ) ⊆ π(F ′), then F = F ′ ∩ π−1 (π(F )).

The set of π-induced subdivisions is ordered by refinement, forming the Baues poset: π(F1) ≼ π(F2) when every
polytope of π(F2) is a union of polytopes of π(F1). More conveniently, as F can be recovered from the knowledge of π(F)
(see [Zie95, Chapter 9]), one has that π(F1) ≼ π(F2) if and only if

⋃
F∈F1

F ⊆ ⋃
F∈F2

F .

By convention, the empty family will be considered a π-induced subdivision. It is the minimal element of the Baues poset.
Note that even if they are called subdivisions, the π-induced subdivisions are better thought of not as subdivisions of Q, but as
polyhedral complexes that live in P (and whose projection by π is a subdivision of Q). Among π-induced subdivisions, some
appear as special (regular) subdivisions, we follow here the reformulation of [Zie95].

Definition 5.3.4 — [Coherent subdivision]
Let π : P → Q be a polytope projection with dimP = d and dimQ = d′. For ω ∈ Rd, define πω : Rd → Rd′+1 by

πω(x) =

(
π(x)
⟨ω,x⟩

)
The family of lower faces of πω(P) projects down to Q by forgetting the last coordinate, giving rise to a π-induced subdivision
of Q. The π-induced subdivisions of this form are called π-coherent subdivisions, and form a sub-poset of the Baues poset:
the lattice of π-coherent subdivisions.

We say that ω captures the subdivision.

Note that when ω is generic with respect to P, then the associated π-coherent subdivision is a finest π-coherent subdivision
in the sense that it covers the empty subdivision in the Baues poset.

The fiber polytope has several (equivalent) definitions. Here, even though the formal definition is given here, we will
not use the realization of the fiber polytope, but only focus on the characterization of its face lattice given in the following
Theorem 5.3.6.

Definition 5.3.5 — [Fiber polytope, integral definition]
For a polytope projection π : P → Q, a section of P is a continuous map γ : Q → P satisfying π ◦ γ = idQ. The fiber
polytope Σπ(P,Q) for the projection π : P → Q is defined by:

Σπ(P,Q) =

{
1

vol(Q)

∫
Q

γ(x)dx ; γ section of P

}
Theorem 5.3.6 — [[BS92, Corollary 1.4]]
For a polytope projection π : P → Q, the fiber polytope Σπ(P,Q) is a polytope and its face lattice is (isomorphic to) the
lattice of π-coherent subdivisions of Q.

⋆ Exercise 5.3.7
Show that Σπ(P,Q) is of dimension dim(P)− dim(Q), though embedded in Rdim(P).

The construction of fiber polytopes through Definition 5.3.5 is cumbersome for numerical computations and drawings.
Fortunately, the following theorem provides a description of fiber polytopes as a finite Minkowski sum.
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5.3. FIBER POLYTOPES

R P

Q

Σρ◦π(R,Q) Σπ(P,Q)

ρ

ρ◦π π

ρ

∆n−1 P

Q

Σ(Q) Σπ(P,Q)

ρ

π

ρ

Figure 5.5: (Left) A projection ρ : R → P induces a projection between the fiber polytopes of R and P for their projections
onto Q. Note that as ρ and π are projection |V (R)| ≥ |V (P)| ≥ |V (Q)|. (Right) If n = |V (Q)|, then Σπ(P,Q) is a projection of
Σ(Q) when |V (P)| = |V (Q)| = n.

Theorem 5.3.8 — [Fiber polytope, finite Minkowski sum definition - [BS92, Theorem 1.5]]
For the polytope projection π : P → Q, consider the subdivision of Q defined as the common refinement of all π(F) for F
a face of P. For each maximal cell C of this subdivision, we denote bC the barycenter (or centroid) of C. Then:

Σπ(P,Q) =
1

vol(Q)

∑
C maximal cells

vol(C) π−1(bC)

Even though an adequate construction of a category of polytopes is still lacking, fiber polytopes have a categorical flavor.
Indeed, if one would construct a category Pol in which objects are polytopes, and morphisms are (surjective) projections
between polytopes, then the map (π : P → Q) 7→ Σπ(P,Q) would resemble a functor from the category of morphisms of Pol
to Pol itself. The commutative diagram of Figure 5.5(Left) indicates how the (categorical) cone over Q would be sent to Pol
by this functor. Notably, the following theorem guaranties fiber polytopes are well-behaved with respect to projections:

Theorem 5.3.9 — [[BS92, Lemma 2.3]]
For two polytopes projections ρ : R → P and π : P → Q, one has: Σπ(P,Q) = ρ

(
Σπ◦ρ(P,R)

)
.

⋆ Exercise 5.3.10
Prove this theorem.

⋆ Exercise 5.3.11 — [Trivial fiber polytopes]
Show that Σπ(P,0) = P. Show that Σπ(P,P) is a point.

⋆ Exercise 5.3.12 — [Monotone path polytopes are fiber polytopes]

For (P, c), show that the monotone path polytope Mc(P) is normally equivalent to Σπ(P,Q) where π :
Rd → R
x 7→ ⟨x, c⟩ .

⋆ Exercise 5.3.13 — [Secondary polytopes are fiber polytopes]
Show that Σ(P) and Σπ(∆n,P) are normally equivalent. One actually even has: Σ(P) = (d+ 1)vol(P)Σπ(∆n,P).

Corollary 5.3.14 — [Fiber polytopes are projections of secondary polytopes]
For π : P → Q, let A = π(V (P)) be the point configuration obtained by projecting the vertices of P. Then Σπ(P,Q) arises
as a projection of the secondary polytope of A, i.e. there exists a projection ρ such that: Σπ(P,Q) = ρ

(
Σ(A)

)
.

Especially, if |V (P)| = |V (Q)|, then: Σπ(P,Q) = ρ
(
Σ(Q)

)
.

⋆ Exercise 5.3.15
Prove this corollary by taking ρ to be the usual projection from the standard simplex ∆|V (P)| to the P.

⋆ Exercise 5.3.16 — [Monotone path polytopes are not zonotopes]
Prove that monotone path polytopes are projections of cubes. Yet, explain why monotone path polytopes are not zonotopes!

⋆ Exercise 5.3.17
Define of (coherent) cellular strings, the counterpart of coherent monotone paths for the faces of monotone path polytopes.

⋆ Exercise 5.3.18
Define of (regular) coarsest subdivisions, the counterpart of regular triangulations for the facets of secondary polytopes.

(Semi-)open problem 5.3.19 — [Fiber polytopes]
Compute the fiber polytope of almost anything (except between cyclic polytopes), especially for projections onto 2- or
3-dimensional polytopes, or for polytopes with a strong combinatorial flavor.
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5.D. MONOTONE ARBORESCENCES, COHERENT ARBORESCENCES, PIVOT POLYTOPES

APPENDICE 5.D

Monotone arborescences, Coherent arborescences, Pivot polytopes

Definition 5.D.1 — [Monotone arborescence]
For a linear program (P, c), a c-monotone arborescence is a map A : V (P) → V (P) such that vA(v) is an edge of P with
⟨v, c⟩ < ⟨A(v), c⟩.

By convention, A(vmax) = vmax.

⋆ Exercise 5.D.2 — [Athanasiadis, 2021]
Show that a linear program (P, c) has

∏
v ̸=vmax

dout(v) monotone arborescences, where the out-degree is taken in the directed
graph GP,c.

Definition 5.D.3 — [Coherent arborescence]
For a linear program (P, c), a c-monotone arborescence is coherent, if there exists ω ∈ Rd such that A(v) is the unique

maximizer of ⟨u−v,ω⟩
⟨u−v,c⟩ for vu an edge of P satisfying ⟨v, c⟩ < ⟨u, c⟩.

We say that ω captures this coherent arborescence.

⋆ Exercise 5.D.4
Give a geometric interpretation to the coherence of a monotone arborescence (make a drawing in the plane, as for coherent
monotone paths).

Definition 5.D.5 — [Pivot fan]
The (max-slope) pivot fan is the fan in which ω and ω′ belong to the same maximal cone if they capture the same
arborescence.

Theorem 5.D.6 — [Black–De Loera–Lütjeharms–Sanyal, 2022]
There exists a polytope, called the (max-slope) pivot polytope whose normal fan is the (max-slope) pivot fan. It is the
convex of

∑
v ̸=vmax

1
⟨A(v)−v,c⟩ (A(v)− v), for A a c-monotone arborescence of (P, c).

⋆ Exercise 5.D.7
Prove that the (max-slope) pivot polytope is normally equivalent to the Minkowski sum of the following sections: for each
vertex v of P, take Pv the convex hull of the edges vu satisfying ⟨v, c⟩ < ⟨u, c⟩, intersect Pv with an hyperplane Hc,⟨v,c⟩+ε for
a small ε > 0.

⋆ Exercise 5.D.8
Show that the monotone path polytope of (P, c) is a deformation of the (max-slope) pivot polytope of (P, c).

Theorem 5.D.9 — [Black–Lütjeharms–Sanyal, 2024]
The (max-slope) pivot polytope of a simplex (for a generic direction) is an associahedron.

Theorem 5.D.10 — [Pilaud–P., 2024]
The (max-slope) pivot polytope of products of simplices (for a generic direction) is are shuffles of associahedra.

We do not define shuffles here: it is an operation on generalized permutahedra which yields a generalized permutahedron.

(Semi-)open problem 5.D.11 — [Pivot polytopes which are generalized permutahedra]
Are the only (max-slope) pivot polytopes which are generalized permutahedra, the ones of product of simplices?

Are (max-slope) pivot polytopes projections of generalized permutahedra?

Theorem 5.D.12 Let π : P → Q be a projection between polytopes. If GP = GQ, then the (max-slope) pivot polytope of
Q is the projection by π of the (max-slope) pivot polytope of P.

Remark 5.D.13 This is far weaker than the case of fiber polytopes! Indeed, recall that projections do, usually, delete vertices,
so the graph is not very rarely retained.

⋆ Exercise 5.D.14
Show that the pivot polytope of a cyclic polytope Cyc(d, n) with d ≥ 4 is a projection of an associahedron.
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5.E. SWEEPS, SWEEP POLYTOPE

APPENDICE 5.E

Sweeps, Sweep polytope

Definition 5.E.1 — [Sweep]
For a point configuration A = (a1, . . . ,an) ⊂ Rd, and ω ∈ Rd, the ω-sweep is the ordered partition (B1, . . . , Br) of [n]
given by the ordering i ≤ j if and only if ⟨ai,ω⟩ ≤ ⟨aj ,ω⟩, i.e. i and j are in the same Bk if ⟨ai,ω⟩ = ⟨aj ,ω⟩, and i ∈ Bk,
j ∈ Bp with k < p if ⟨ai,ω⟩ < ⟨aj ,ω⟩.

We say that ω captures this sweep.
These ordered partition are ordered by refinement to create the lattice of sweeps.

Definition 5.E.2 — [Sweep fan]
The sweep fan is the fan in which ω and ω′ belong to the same maximal cone if they capture the same sweep.

Theorem 5.E.3 — [Padrol–Philippe, 2023]
There exists a polytope, called the sweep polytope, whose normal fan is the sweep fan. It is obtained as the zonotope∑

1≤i<j≤n

[
− 1

2 (ai − aj),
1
2 (ai − aj)

]
.

⋆ Exercise 5.E.4
Show that the sweep polytope of a simplex is the permutahedron.

⋆ Exercise 5.E.5
Show that the sweep polytope is a projection of the permutahedron Πn.

Show that the sweep fan is induced by an hyperplane arrangement.

⋆ Exercise 5.E.6

Show that the sweep polytope is the monotone path polytope of the zonotope n
2

∑
i∈[n]

[
−
(
ai

1

)
,

(
ai

1

)]
, for c = en+1.

Remark 5.E.7 Conversely, monotone path polytopes of zonotopes for generic c are sweep polytopes, up to normal equivalence.

(Semi-)open problem 5.E.8 — [Sweep polytopes of cyclic polytopes, Castillo–Labbé, 2024]
Describe the sweep polytope of (the vertices of) cyclic polytopes. Especially, what is the number N(d, n) of sweeps of the
d-dimensional cyclic polytope with n-vertices? Is there a closed formula when n≪ d?
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Section 6.1

Questionnaire (multiple choice)

⋆ Exercise 6.1.1
What is a convex polytope?

1) The convex hull of a collection of points.
2) The feasible domain of a linear program.
3) The intersection of finitely many closed half-spaces.
4) A bounded convex set whose boundary has curvature 0 almost everywhere.

⋆ Exercise 6.1.2
Which of the following implies that the polytopes P and Q have the same face lattice?

1) The graph of P and the graph of Q are isomorphic.
2) There is a bijection between the facets of P and the facets of Q that sends a facet to one with the same face lattice.
3) For all k, the number of faces of dimension k of P is the same as the one of Q.
4) There exists a affine isomorphism (i.e. affine bijective transformation) L with L(P) = Q.

⋆ Exercise 6.1.3
Sort these polytopes according to their number of vertices (for d large).

d-cube, d-simplex, d-permutahedron, d-associahedron

⋆ Exercise 6.1.4
Which one is true in dimension 3 but false in dimension 4?

1) If two polytopes have the same graph, they have the same face lattice.
2) For every polytope P, there exists Q with the same face lattice and all the vertices of Q have integer coordinates.
3) In every facets F of a polytope, the edge vectors sum to zero (i.e. there exists a way to orient the edges u → v such that∑

u→v∈E(F) v − u = 0).

4) Every lattice polytope (i.e. vertices with integer coordinates) has a dilate that can be triangulated by lattice simplices
of minimal volume (i.e. volume 1

d! ).

⋆ Exercise 6.1.5
A Minkowski sum of 2 co-planar triangles can have: 3, 4, 5 or 6 edges?
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6.2. GRAPH ASSOCIAHEDRA

Section 6.2

Graph Associahedra

⋆ Exercise 6.2.1
Recall: for a set X, we denote eX :=

∑
i∈X ei, and ∆X = conv(ei ; i ∈ X).

In a connected graph G = (V,E), a tube is a connected induced sub-graph (considered as a sub-set of the vertices of G),
except that V itself is not considered a tube. The graph associahedron of G is defined as AssoG :=

∑
t tube of G ∆t.

1) Show that AssoPn
is the usual associahedron (of Loday), where Pn is the path on n vertices.

2) Show that AssoKn
is (normally equivalent to) the permutahedron, where Kn is the complete graph on n vertices.

3) Show that for any graph G, then AssoG is a generalized permutahedron (a.k.a. a deformed permutahedron).
4) Prove that dimAssoG = |V | − 1. (Hint1: what’s

∑
i xi? / Hint2: edges are tubes)

5) Fix a tube t. What is the nomal fan of ∆t, in particular its rays?
6) Deduce the rays of the normal fan of AssoG (carefull:low dimension stuffs may behave weirdly): show that AssoG has one

facet per tube of G.
7) Give a (irredundant) inequality description of AssoG.
8) A tubing is a collection of tubes T = (t1, . . . , tr) such that for all i ̸= j, then either ti ⊊ tj , or tj ⊆ ti, or there is no edge

between ti and tj (i.e. ti ∪ tj is not a tube). Show that the vertices of AssoG are in bijection with maximal tubings (and its
faces with tubings). [Hardest question]

9) Show that a maximal tubing has n− 1 tubes. Deduce that AssoG is a simple polytope.
10) Deduce the dimension of the deformation cone of AssoG.
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